4.7 Article

Down-regulation of BMAL1 by MiR-494-3p Promotes Hepatocellular Carcinoma Growth and Metastasis by Increasing GPAM-mediated Lipid Biosynthesis

Journal

INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES
Volume 18, Issue 16, Pages 6129-6144

Publisher

IVYSPRING INT PUBL
DOI: 10.7150/ijbs.74951

Keywords

BMAL1; GPAM; EZH2; lipid biosynthesis; growth; metastasis; hepatocellular carcinoma

Funding

  1. National Natural Science Foundation of China
  2. Young Elite Scientist Program by CAST
  3. Natural Science Foundation of Shaanxi Province
  4. [81772934]
  5. [81772618]
  6. [81802345]
  7. [2018QNRC001]
  8. [2020JM-327]

Ask authors/readers for more resources

The down-regulation of BMAL1 is associated with poor survival in HCC patients, and it promotes HCC cell growth and metastasis by suppressing the expression of GPAM and reducing LPA levels. The activator of BMAL1, SR8278, exhibits therapeutic effects on HCC, highlighting the potential of BMAL1 as a target for HCC therapy.
The circadian clock confers daily rhythmicity to many crucial biological processes and behaviors and its disruption is closely associated with carcinogenesis in several types of cancer. Brain and muscle arnt-like protein 1 (BMAL1) is a core circadian rhythm component in mammals and its dysregulation has been shown to contribute to aberrant metabolism in human diseases. However, the biological functions of BMAL1, especially its involvement in aberrant lipid metabolism in hepatocellular carcinoma (HCC), remain elusive. In the present study, we found that BMAL1 was frequently down-regulated in HCC cells mainly due to the up-regulation of miR-494-3p. Down-regulation of BMAL1 was significantly associated with poor survival in HCC patients. BMAL1 down-regulation promoted HCC cell growth and metastasis both in vitro and in vivo. Mechanistically, through cooperating with EZH2, BMAL1 transcriptionally suppressed the expression of glycerol-3-phosphate acyltransferase mitochondrial (GPAM), a key enzyme involved in the regulation of lipid biosynthesis, leading to reduced levels lysophosphatidic acid (LPA), which have long been known as mediator of oncogenesis. Particularly, treatment with SR8278, an activator of BMAL1, exhibited a therapeutic effect on HCC in vitro and in vivo. In conclusion, BMAL1 plays a critical anti-oncogenic role in HCC, providing strong research evidence for BMAL1 as a prospective target for HCC therapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available