4.6 Review

Guidance to improve the scientific value of zetapotential measurements in nanoEHS

Journal

ENVIRONMENTAL SCIENCE-NANO
Volume 3, Issue 5, Pages 953-965

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6en00136j

Keywords

-

Funding

  1. National Science Foundation Center for Hierarchical Manufacturing [CMMI-1025020]
  2. National Science Foundation [CBET-1548199]
  3. Div Of Chem, Bioeng, Env, & Transp Sys [1548199] Funding Source: National Science Foundation

Ask authors/readers for more resources

Nanoparticle zeta-potentials are relatively easy to measure, and have consistently been proposed in guidance documents as a particle property that must be included for complete nanoparticle characterization. There is also an increasing interest in integrating data collected on nanomaterial properties and behavior measured in different systems (e.g. in vitro assays, surface water, soil) to identify the properties controlling nanomaterial fate and effects, to be able to integrate and reuse datasets beyond their original intent, and ultimately to predict behaviors of new nanomaterials based on their measured properties (i.e. read across), including zeta-potential. Several confounding factors pose difficulty in taking, integrating and interpreting this measurement consistently. Zeta-potential is a modeled quantity determined from measurements of the electrophoretic mobility in a suspension, and its value depends on the nanomaterial properties, the solution conditions, and the theoretical model applied. The ability to use zeta-potential as an explanatory variable for measured behaviors in different systems (or potentially to predict specific behaviors) therefore requires robust reporting with relevant meta-data for the measurement conditions and the model used to convert mobility measurements to zeta-potentials. However, there is currently no such standardization for reporting in the nanoEHS literature. The objective of this tutorial review is to familiarize the nanoEHS research community with the zeta-potential concept and the factors that influence its calculated value and interpretation, including the effects of adsorbed macromolecules. We also provide practical guidance on the precision of measurement, interpretation of zeta-potential as an explanatory variable for processes of interest (e.g. toxicity, environmental fate), and provide advice for addressing common challenges associated with making meaningful zeta-potential measurements using commercial instruments. Finally, we provide specific guidance on the parameters that need to be reported with zetapotential measurements to maximize interpretability and to support scientific synthesis across data sets.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available