4.5 Article

The Complete Mitochondrial Genome of Hyotissa hyotis (Bivalvia: Gryphaeidae) Reveals a Unique Gene Order within Ostreoidea

Journal

FISHES
Volume 7, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/fishes7060317

Keywords

mitochondrial genome; oyster; Hyotissa hyotis; gene rearrangement; phylogeny

Funding

  1. National Key Research and Development Program of China
  2. Key Research and Development Project of Hainan Province
  3. Hainan Provincial Natural Science Foundation of China
  4. [2019YFD0901301]
  5. [ZDYF2021SHFZ269]
  6. [322QN260]

Ask authors/readers for more resources

The complete mitochondrial DNA of the Gryphaeidae family, represented by Hyotissa hyotis, was sequenced for the first time and compared with other available oyster mitochondrial DNA. The study revealed significant differences in gene order and identified new features, such as the duplication of trnW. Phylogenetic analysis supported the close relationship between Gryphaeidae and Ostreidae. This study provides important insights into the mitochondrial evolution of oysters.
The mitochondrial (mt) genome is an important tool when studying the evolution of metazoan animals. The oyster family Gryphaeidae, together with Ostreidae, is one of the two extant taxa of superfamily Ostreoidea. Up until now, the available mitochondrial genomes of oysters were all limited to family Ostreidae. In the present study, the first complete mtDNA of family Gryphaeidae represented by Hyotissa hyotis was sequenced and compared with other available ostreoid mtDNA. The mtDNA of H. hyotis is 22,185 bp in length, encoding 13 protein-coding-genes (PCGs), two ribosomal RNA (rRNA) and 23 transfer RNA (tRNA) genes. Within all the intergenic regions that range from 2 to 1528 bp, two large non-coding regions were identified. The first large non-coding region, located between Cox1 and trnA, contains 1528 nucleotides, while the second one is 1191 bp in length and positioned between Cytb and Nad2. The nucleotide composition of the whole mtDNA is A + T biased, accounting for 59.2%, with a negative AT skew value of -0.20 and a positive GC skew value of 0.33. In contrast to the mtDNA of Ostreidae, neither the split of rrnL nor rrnS was detected in that of H. hyotis. The duplication of trnW of H. hyotis was also discovered for the first time within Ostreoidea. The gene order of H. hyotis is quite different from those of ostreids, indicating extensive rearrangements within superfamily Ostreoidea. The reconstructed phylogeny supported H. hyotis as sister to Ostreidae, with the latter clade formed by Ostrea + (Saccostrea + Crassostrea). This study could provide important information for further understanding the mitochondrial evolution of oysters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available