3.8 Proceedings Paper

Self-supervised Neural Articulated Shape and Appearance Models

Publisher

IEEE COMPUTER SOC
DOI: 10.1109/CVPR52688.2022.01536

Keywords

-

Ask authors/readers for more resources

This research proposes a novel approach for learning the geometry, appearance, and motion representation of dynamic articulated objects, trained in a self-supervised manner without requiring articulation annotations. The model can independently control shape, appearance, and articulation codes, perform well for different joint types and combinations, and enable various applications.
Learning geometry, motion, and appearance priors of object classes is important for the solution of a large variety of computer vision problems. While the majority of approaches has focused on static objects, dynamic objects, especially with controllable articulation, are less explored. We propose a novel approach for learning a representation of the geometry, appearance, and motion of a class of articulated objects given only a set of color images as input. In a self-supervised manner, our novel representation learns shape, appearance, and articulation codes that enable independent control of these semantic dimensions. Our model is trained end-to-end without requiring any articulation annotations. Experiments show that our approach performs well for different joint types, such as revolute and prismatic joints, as well as different combinations of these joints. Compared to state of the art that uses direct 3D supervision and does not output appearance, we recover more faithful geometry and appearance from 2D observations only. In addition, our representation enables a large variety of applications, such as few-shot reconstruction, the generation of novel articulations, and novel view-synthesis. Project page: https://weify627.github.io/nasam/.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available