4.7 Article

Atmospheric particle abundance and sea salt aerosol observations in thespringtime Arctic: a focus on blowing snow and leads

Journal

ATMOSPHERIC CHEMISTRY AND PHYSICS
Volume 22, Issue 23, Pages 15263-15285

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-22-15263-2022

Keywords

-

Funding

  1. National Science Foundation Office of Polar Programs [1417668, 1417906, 1417914, 2000493, 2000428, 2000403]
  2. National Aeronautics and Space Administration Earth Science Program [NNX14AP44G]
  3. DOE Atmospheric Systems Research program [DE-SC0019392]
  4. Sloan Research Fellowship
  5. Cooperative Institute for Climate, Ocean, and Ecosystem Studies (CIOCES) underNOAA Cooperative Agreement [NA20OAR4320271, 2022-1206]
  6. Hong Kong General Re-search Fund [15223221]
  7. Directorate For Geosciences
  8. Office of Polar Programs (OPP) [2000493, 2000428, 1417914, 1417906] Funding Source: National Science Foundation
  9. Directorate For Geosciences
  10. Office of Polar Programs (OPP) [2000403, 1417668] Funding Source: National Science Foundation
  11. U.S. Department of Energy (DOE) [DE-SC0019392] Funding Source: U.S. Department of Energy (DOE)

Ask authors/readers for more resources

Sea salt aerosols have a significant impact on the radiation budget and atmospheric composition in the rapidly changing Arctic. This study found that both open leads in Arctic sea ice and blowing snow contribute to the production of sea salt aerosols. Blowing snow conditions led to an increase in aerosol particle concentrations and changes in size distribution.
Sea salt aerosols play an important role in the radiation budget and atmospheric composition over the Arctic, where the climate is rapidly changing. Previous observational studies have shown that Arctic sea ice leads are an important source of sea salt aerosols, and modeling efforts have also proposed blowing snow sublimation as a source. In this study, size-resolved atmospheric particle number concentrations and chemical composition were measured at the Arctic coastal tundra site of Utqiagvik, Alaska, during spring (3 April-7 May 2016). Blowing snow conditions were observed during 25 % of the 5-week study period and were overpredicted by a commonly used blowing snow parameterization based solely on wind speed and temperature. Throughout the study, open leads were present locally. During periods when blowing snow was observed, significant increases in the number concentrations of 0.01-0.06 mu m particles (factor of 6, on average) and 0.06-0.3 mu m particles (67 %, on average) and a significant decrease (82 %, on average) in 1-4 mu m particles were observed compared to low wind speed periods. These size distribution changes were likely caused by the generation of ultrafine particles from leads and/or blowing snow, with scavenging of supermicron particles by blowing snow. At elevated wind speeds, both submicron and supermicron sodium and chloride mass concentrations were enhanced, consistent with wind-dependent local sea salt aerosol production. At moderate wind speeds below the threshold for blowing snow as well as during observed blowing snow, individual sea spray aerosol particles were measured. These individual salt particles were enriched in calcium relative to sodium in seawater due to the binding of this divalent cation with organic matter in the sea surface microlayer and subsequent enrichment during seawater bubble bursting. The chemical composition of the surface snowpack also showed contributions from sea spray aerosol deposition. Overall, these results show the contribution of sea spray aerosol production from leads on both aerosols and the surface snowpack. Therefore, if blowing snow sublimation contributed to the observed sea salt aerosol, the snow being sublimated would have been impacted by sea spray aerosol deposition rather than upward brine migration through the snowpack. Sea spray aerosol production from leads is expected to increase, with thinning and fracturing of sea ice in the rapidly warming Arctic.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available