4.1 Article

Environmental Factors Affecting the Community of Methane-oxidizing Bacteria

Journal

MICROBES AND ENVIRONMENTS
Volume 37, Issue 1, Pages -

Publisher

JAPANESE SOC MICROBIAL ECOLOGY, DEPT BIORESOURCE SCIENCE
DOI: 10.1264/jsme2.ME21074

Keywords

methane-oxidizing bacteria; environmental factors; pH; diversity; Mycobacterium

Ask authors/readers for more resources

Methane-oxidizing bacteria (MOB) are divided into Type I and Type II, which have different environmental preferences. The pH value was found to be a crucial factor influencing the MOB types. Type II thrived at low pH conditions, while Type I dominated at neutral pH conditions. Additionally, unknown bacterial groups with methane oxidation capability were discovered.
Methane-oxidizing bacteria (MOB) are ubiquitous and play an important role in the mitigation of global warming by reducing methane. MOB are commonly classified into Type I and Type II, belonging to Gammaproteobacteria and Alphaproteobacteria, respectively, and the diversity of MOB has been examined. However, limited information is currently available on favorable environments for the respective MOB. To investigate the environmental factors affecting the dominant type in the MOB community, we performed MOB enrichment using down-flow hanging sponge reactors under 38 different environmental conditions with a wide range of methane (0.01-80%) and ammonium concentrations (0.001-2,000 mg N L-1) and pH 4-7. Enrichment results revealed that pH was a crucial factor influencing the MOB type enriched. Type II was dominantly enriched at low pH (4-5), whereas Type I was dominant around neutral pH (6-7). However, there were some unusual cultivated biomass samples. Even though high methane oxidation activity was observed, very few or zero conventional MOB were detected using common FISH probes and primer sets for the 16S rRNA gene and pmoA gene amplification. Mycobacterium mostly dominated the microbial community in the biomass cultivated at very high NH4+ concentrations, strongly implying that it exhibits methane oxidation activity. Collectively, the present results revealed the presence of many unknown phylogenetic groups with the capacity for methane oxidation other than the reported MOB.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available