4.3 Article

Rational design of carbon nitride for remarkable photocatalytic H2O2 production

Related references

Note: Only part of the references are listed.
Article Engineering, Environmental

Bifunctional template-mediated synthesis of porous ordered g-C3N4 decorated with potassium and cyano groups for effective photocatalytic H2O2 evolution from dual-electron O2 reduction

Yuan Pan et al.

Summary: A modified photocatalyst with cyanide defects and potassium intercalation has been developed for efficient production of H2O2, demonstrating significantly higher yield and energy conversion efficiency compared to traditional catalysts. The study deepens the understanding of O-2 reduction mechanism and points out promising directions for future design of novel photocatalysts for energy conversion and environmental applications.

CHEMICAL ENGINEERING JOURNAL (2022)

Review Chemistry, Physical

Single-atom catalysts for photocatalytic energy conversion

Zhong-Hua Xue et al.

Summary: Artificial photocatalytic energy conversion is an intriguing strategy for solving the energy crisis and environmental problems, and single-atom catalysts have emerged as promising candidates for this purpose. This review presents the recent progress and challenges of single-atom catalysts in photocatalytic energy conversion systems, and explores the fundamental principles and applications of single-atom photocatalysis.

JOULE (2022)

Article Engineering, Environmental

Highly efficient photocatalytic H2O2 production with cyano and SnO2 co-modified g-C3N4

Chengcheng Chu et al.

Summary: In this study, the photocatalytic properties of g-C3N4 for H2O2 production were enhanced by co-modification with cyano group and SnO2 nanocrystal. The modified g-C3N4 showed excellent performance with a H2O2 yield rate of 703.4 mu M g(-1)h(-1) under visible light illumination, indicating a promising approach to improve the photocatalytic activity of g-C3N4.

CHEMICAL ENGINEERING JOURNAL (2022)

Article Chemistry, Physical

An efficient and unique route for the fabrication of highly condensed oxygen-doped carbon nitride for the photodegradation of synchronous pollutants and H2O2 production under ambient conditions

Milad Jourshabani et al.

Summary: This study successfully synthesized S-doped and O-doped carbon nitride through N2-assisted thermal polycondensation, with O-CN demonstrating excellent activity and stability in photocatalysis.

APPLIED CATALYSIS B-ENVIRONMENTAL (2022)

Article Chemistry, Multidisciplinary

Simultaneously Tuning Band Structure and Oxygen Reduction Pathway toward High-Efficient Photocatalytic Hydrogen Peroxide Production Using Cyano-Rich Graphitic Carbon Nitride

Lei Chen et al.

Summary: A novel composite photocatalyst of cyano-rich graphitic carbon nitride g-C3N4 was successfully fabricated by sodium chloride-assisted calcination on dicyandiamide. The obtained photocatalysts exhibited superior activity and selectivity for H2O2 production, showing great potential for practical applications in environmental remediation and energy supply.

ADVANCED FUNCTIONAL MATERIALS (2021)

Review Nanoscience & Nanotechnology

Engineering the Coordination Sphere of Isolated Active Sites to Explore the Intrinsic Activity in Single-Atom Catalysts

Xin Wu et al.

Summary: Reducing metallic nanoparticles to single isolated atoms has garnered significant attention in heterogeneous catalysis for its potential to enhance atomic utilization and catalytic performance. The local coordination environment of single atoms plays a crucial role in their electronic structures and catalytic behaviors. Future research should focus on engineering the coordination spheres of single-atom catalysts to fine-tune their catalytic activities.

NANO-MICRO LETTERS (2021)

Review Chemistry, Physical

Roles of sulfur-edge sites, metal-edge sites, terrace sites, and defects in metal sulfides for photocatalysis

Yue Liu et al.

Summary: Metal-sulfide photocatalysts possess excellent optoelectronic properties and appropriate band-gap energy. Understanding the relationship between photocatalytic performance and reactive sites in metal sulfide is crucial for enhancing activity and selectivity. Various correlations between the active sites of metal sulfides and photocatalytic applications have been established to explore opportunities and challenges for their development in photocatalysis.

CHEM CATALYSIS (2021)

Article Chemistry, Physical

Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide

Zhenyuan Teng et al.

Summary: Artificial photosynthesis is a promising strategy for producing environmentally friendly oxidants and clean fuels. A carbon nitride-supported antimony single atom photocatalyst has been developed for efficient synthesis of H2O2 under visible light irradiation.

NATURE CATALYSIS (2021)

Review Chemistry, Multidisciplinary

Photoredox catalysis over semiconductors for light-driven hydrogen peroxide production

Xiangkang Zeng et al.

Summary: Hydrogen peroxide is a widely used commodity chemical, but its current industrial production process is not sustainable. Utilizing photoredox catalysis over semiconductors, solar energy can be harnessed for sustainable production of H2O2 from water and oxygen. This review discusses the latest advances and main pathways in light-driven H2O2 production.

GREEN CHEMISTRY (2021)

Review Chemistry, Physical

C-, N-Vacancy defect engineered polymeric carbon nitride towards photocatalysis: viewpoints and challenges

Abhinandan Kumar et al.

Summary: Graphite-like carbon nitride (g-C3N4; GCN) is a metal-free polymeric semiconductor material with fascinating physicochemical and photoelectronic structural features, yet its wide-range applicability is limited by inherent drawbacks such as rapid reassembly of photocarriers and low specific surface area. Introducing vacancies into the framework of GCN to generate 0D point defects has shown potential in manipulating optical absorption, radiative carrier isolation, and surface photoreactions. Various advanced strategies for controlled designing of vacancy-rich GCN have been explored, highlighting the significance of defect engineering on optical absorption, charge isolation, and surface photoreaction ability in GCN. Applications of defect engineered GCN include photocatalytic water splitting, CO2 conversion, N-2 fixation, pollutant degradation, and H2O2 production.

JOURNAL OF MATERIALS CHEMISTRY A (2021)

Review Chemistry, Physical

C-, N-Vacancy defect engineered polymeric carbon nitride towards photocatalysis: viewpoints and challenges

Abhinandan Kumar et al.

Summary: This review summarizes the comprehensive study on vacancy defect engineered GCN, discussing methods for introducing defects, their impact on GCN, advanced strategies for designing defect-rich GCN, and techniques for identifying defects. It also reviews the significance of defect engineering in GCN in terms of optical absorption, charge isolation, and surface photoreaction abilities, and scrutinizes the applications of defect engineered GCN in various areas like photocatalytic water splitting and CO2 conversion. The review concludes with insights on future challenges and opportunities in this intriguing and emerging field.

JOURNAL OF MATERIALS CHEMISTRY A (2021)

Review Chemistry, Multidisciplinary

Production of Hydrogen Peroxide by Photocatalytic Processes

Huilin Hou et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Chemistry, Multidisciplinary

Heteroatom Dopants Promote Two-Electron O2Reduction for Photocatalytic Production of H2O2on Polymeric Carbon Nitride

Peng Zhang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Multidisciplinary Sciences

Spatially separating redox centers on 2D carbon nitride with cobalt single atom for photocatalytic H2O2 production

Chiheng Chu et al.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2020)

Article Chemistry, Multidisciplinary

Sunlight-Driven Biomass Photorefinery for Coproduction of Sustainable Hydrogen and Value-Added Biochemicals

Xinxing Wu et al.

ACS SUSTAINABLE CHEMISTRY & ENGINEERING (2020)

Review Chemistry, Multidisciplinary

A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production

Yanyan Sun et al.

CHEMICAL SOCIETY REVIEWS (2020)

Article Chemistry, Physical

Hydrogen Peroxide Production from Solar Water Oxidation

Jiali Liu et al.

ACS ENERGY LETTERS (2019)

Article Chemistry, Physical

One- or Two-Electron Water Oxidation, Hydroxyl Radical, or H2O2 Evolution

Samira Siahrostami et al.

JOURNAL OF PHYSICAL CHEMISTRY LETTERS (2017)

Article Chemistry, Physical

Urea-Modified Carbon Nitrides: Enhancing Photocatalytic Hydrogen Evolution by Rational Defect Engineering

Vincent Wing-hei Lau et al.

ADVANCED ENERGY MATERIALS (2017)

Article Chemistry, Physical

Facile synthesis of oxygen doped carbon nitride hollow microsphere for photocatalysis

Yuxiong Wang et al.

APPLIED CATALYSIS B-ENVIRONMENTAL (2017)

Article Chemistry, Multidisciplinary

Phosphorus-Doped Carbon Nitride Tubes with a Layered Micro-nanostructure for Enhanced Visible-Light Photocatalytic Hydrogen Evolution

Shien Guo et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2016)

Article Multidisciplinary Sciences

Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites

Vincent Wing-hei Lau et al.

NATURE COMMUNICATIONS (2016)

Article Chemistry, Physical

Density Functional Theory Study of Ni-Nx/C Electrocatalyst for Oxygen Reduction in Alkaline and Acidic Media

Shyam Kattel et al.

JOURNAL OF PHYSICAL CHEMISTRY C (2012)

Article Materials Science, Multidisciplinary

Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation

Jess Wellendorff et al.

PHYSICAL REVIEW B (2012)

Article Multidisciplinary Sciences

Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles

Jianhua Sun et al.

NATURE COMMUNICATIONS (2012)

Review Chemistry, Multidisciplinary

Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process

Jose M. Campos-Martin et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2006)

Article Materials Science, Multidisciplinary

Real-space grid implementation of the projector augmented wave method

JJ Mortensen et al.

PHYSICAL REVIEW B (2005)

Article Chemistry, Physical

Origin of the overpotential for oxygen reduction at a fuel-cell cathode

JK Norskov et al.

JOURNAL OF PHYSICAL CHEMISTRY B (2004)