4.4 Article

Single-cell and spatial RNA sequencing identify perturbators of microglial functions with aging

Journal

NATURE AGING
Volume 2, Issue 6, Pages 508-+

Publisher

SPRINGERNATURE
DOI: 10.1038/s43587-022-00205-z

Keywords

-

Funding

  1. MS Society of Canada (MSSOC)
  2. Canadian Institutes of Health Research (CIHR) [3527, FDN 167270, 3188, PJT166056]
  3. Harley N. Hotchkiss Postdoctoral Fellowship
  4. Alberta Graduate Excellence Scholarship
  5. CIHR Canada Graduate Scholarships
  6. Fonds de Recherche en Sante du Quebec

Ask authors/readers for more resources

Using single-cell and spatial transcriptomics, the authors identified several aging-associated and oxidized phosphatidylcholine-associated changes in microglia in the spinal cord, including an increase in osteopontin that contributed to neurodegeneration and neuroinflammation.
Microglia are the immune sentinels of the central nervous system with protective roles such as the removal of neurotoxic oxidized phosphatidylcholines (OxPCs). As aging alters microglial function and elevates neurological disability in diseases such as multiple sclerosis, defining aging-associated factors that cause microglia to lose their custodial properties or even become injurious can help to restore their homeostasis. We used single-cell and spatial RNA sequencing in the spinal cord of young (6-week-old) and middle-aged (52-week-old) mice to determine aging-driven microglial reprogramming at homeostasis or after OxPC injury. We identified numerous aging-associated microglial transcripts including osteopontin elevated in OxPC-treated 52-week-old mice, which correlated with greater neurodegeneration. Osteopontin delivery into the spinal cords of 6-week-old mice worsened OxPC lesions, while its knockdown in 52-week-old lesions attenuated microglial inflammation and axon loss. Thus, elevation of osteopontin and other transcripts in aging disorders including multiple sclerosis perturbs microglial functions contributing to aging-associated neurodegeneration. Using single-cell and spatial transcriptomics, the authors identified several aging-associated and oxidized phosphatidylcholine-associated changes in microglia in the spinal cord, including an increase in osteopontin that contributed to neurodegeneration and neuroinflammation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available