3.9 Article

Dynamical Regimes of Polar Vortices on Terrestrial Planets with a Seasonal Cycle

Journal

PLANETARY SCIENCE JOURNAL
Volume 3, Issue 4, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.3847/PSJ/ac54b6

Keywords

-

Ask authors/readers for more resources

This study used an idealized general circulation model to investigate the seasonal variations of polar vortices, finding distinct dynamic regimes for polar vortex seasonal cycle across the parameter space, some of which share similarities with observed polar vortices while others have no counterparts in the solar system.
Polar vortices are common planetary-scale flows that encircle the pole in the middle or high latitudes and are observed in most of the solar system's planetary atmospheres. The polar vortices on Earth, Mars, and Titan are dynamically related to the mean meridional circulation and exhibit a significant seasonal cycle. However, the polar vortex's characteristics vary between the three planets. To understand the mechanisms that influence the polar vortex's dynamics and dependence on planetary parameters, we use an idealized general circulation model with a seasonal cycle in which we vary the obliquity, rotation rate, and orbital period. We find that there are distinct regimes for the polar vortex seasonal cycle across the parameter space. Some regimes have similarities to the observed polar vortices, including a weakening of the polar vortex during midwinter at slow rotation rates, similar to Titan's polar vortex. Other regimes found within the parameter space have no counterpart in the solar system. In addition, we show that for a significant fraction of the parameter space, the vortex's potential vorticity latitudinal structure is annular, similar to the observed structure of the polar vortices on Mars and Titan. We also find a suppression of storm activity during midwinter that resembles the suppression observed on Mars and Earth, which occurs in simulations where the jet velocity is particularly strong. This wide variety of polar vortex dynamical regimes that shares similarities with observed polar vortices, suggests that among exoplanets there can be a wide variability of polar vortices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available