4.5 Article

Photosynthetic CO2 uptake and carbon sequestration potential of deciduous and evergreen tree species in an urban environment

Journal

URBAN ECOSYSTEMS
Volume 20, Issue 3, Pages 663-674

Publisher

SPRINGER
DOI: 10.1007/s11252-016-0627-0

Keywords

Allometric equations; Carbon sequestration; Urban greening; Leaf-level gas exchange; Leaf nitrogen; New Zealand

Ask authors/readers for more resources

Urban tree planting programmes are increasingly promoted as a way to reduce atmospheric carbon dioxide (CO2) mixing ratios. However, few studies have investigated the photosynthetic CO2 uptake potential of different urban tree species across seasons. In particular little is known about photosynthetic CO2 uptake in cities with a subtropical, oceanic climate where evergreen species are dominant. We addressed this shortcoming by measuring net photosynthetic rates of ten native and exotic tree species during different seasons and times of the day in Auckland, New Zealand. We also assessed the potential of leaf nitrogen (N) concentration as a proxy for net photosynthetic capacities of urban trees, which is of particular importance to upscale leaf-level photosynthetic CO2 uptake to local and regional scales. In addition, we compared measured net photosynthetic capacities (light-saturated net photosynthetic rates) with carbon (C) sequestration rates estimated using tree growth measurements and allometric equations. Mean net photosynthetic capacities ranged between 2.37 and 10.48 mu mol m(-2) s(-1) across all seasons and were closely related to tree C sequestration rates, suggesting that increased photosynthesis enhances growth rates and therefore tree C sequestration rates. Given that winter net photosynthetic capacities remained high in evergreen species (3.38-13.96 mu mol m(-2) s(-1)), with almost 50% higher mean net photosynthetic capacity compared to summer across all species, we suggest that tree planting programmes for CO2 mitigation should favour long living evergreen tree species with high basal area increments (BAI). Leaf N explained 43% and 57% of the variability of photosynthetic capacities across species in summer and winter, respectively. These results indicate that leaf N may be used as a proxy for net photosynthetic capacities of commonly planted urban trees in Auckland. However, further research is required to provide robust models that may be used to estimate photosynthetic CO2 uptake at a local and urban scale.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available