4.6 Article

Highly Sensitive Band Alignment of the Graphene/MoSi2N4 Heterojunction via an External Electric Field

Journal

ACS APPLIED ELECTRONIC MATERIALS
Volume 4, Issue 6, Pages 2897-2905

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsaelm.2c003742897

Keywords

KEYWORDS; 2D vdW heterojunction; electronic structure; band alignment; electric fi eld; Schottky barrier

Ask authors/readers for more resources

This study systematically investigates the influence of the combination of graphene and monolayer MoSi2N4 on the interfacial characteristic and electronic structure, and finds that the type and height of the Schottky barrier can be tuned by altering the interlayer spacing or applying an external electric field.
The combination of graphene (GR) and monolayer MoSi2N4 has attracted much attention; however, the comprehension of its electrical contact modulation is still not fully explored. Herein, the influence of the interlayer spacing and external electric field on the interfacial characteristic and electronic structure of the GR/MoSi2N4 heterojunction was systematically investigated using first-principles calculations. It is found that a stable van der Waals heterojunction forms when GR incorporates on the MoSi2N4 sheets. The results indicate that both the type and height of the Schottky barrier could be tuned by altering the interlayer spacing between GR and MoSi2N4 sheets or applying a vertical external electric field on the GR/MoSi2N4 heterojunction. Noteworthily, the Schottky barrier height markedly changes about 0.2-0.3 eV with the increase of external electric field per 0.1 VmiddotA-1. It is confirmed that the change of energy bands is caused by the charge redistribution with the interlayer spacing and external electric field. These findings will provide rational evidence for the design of next-generation field-effect transistors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available