4.6 Article

Predicting the Potential Distribution of Olea ferruginea in Pakistan incorporating Climate Change by Using Maxent Model

Journal

SUSTAINABILITY
Volume 8, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/su8080722

Keywords

bioclimatic; climate change; habitat shift; Jackknife test; Maxent model; Olea ferruginea

Ask authors/readers for more resources

The potential distribution of Olea ferruginea was predicted by Maxent model for present and the upcoming hypothetical (2050) climatic scenario. O. ferruginea is an economically beneficial plant species. For predicting the potential distribution of O. ferruginea in Pakistan, Worldclim variables for current and future climatic change scenarios, digital elevation model (DEM) slope, and aspects with the occurrence point were used. Pearson correlation was used to reject highly correlated variables. A total of 219 sighting points were used in the Maxent modeling. The area under curve (AUC) value was higher than 0.98. The approach used in this study is considered useful in predicting the potential distribution of O. ferruginea species, and can be an effective tool in the conservation and restoration planning for human welfare. The results show that there is a significant impact under future bioclimatic scenarios on the potential distribution of O. ferruginea in Pakistan. There is a significant decrease in the overall distribution of O. ferruginea due to loss of habitats under current distribution range, but this will be compensated by gain of habitat at higher altitudes in the future climate change scenario (habitat shift). It is recommended that the areas predicted suitable for the O. ferruginea may be used for plantation of this species while the deforested land should be restored for human welfare.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available