3.8 Article

Synthesis, Characterization, and Photocatalytic Properties of Sulfur- and Carbon-Codoped TiO2 Nanoparticles

Journal

NANOSCALE RESEARCH LETTERS
Volume 11, Issue -, Pages -

Publisher

SPRINGEROPEN
DOI: 10.1186/s11671-016-1353-5

Keywords

TiO2 nanoparticle; Metatitanic acid; Thiourea; Photocatalysis; Sulfur-carbon doping; X-ray photoelectron spectroscopy

Funding

  1. Ministry of Education and Science of Ukraine (DB\Tekton) [0115U000427]
  2. European Union [295128]

Ask authors/readers for more resources

One-step TiO2 nanoparticle synthesis based on the interaction between thiourea and metatitanic acid is applied for sulfur and carbon anatase codoping. The synthesis of the doped TiO2 has been monitored by means of differential thermal analysis and thermogravimetric analysis (DTA-TG), which allows determining the optimal thermal conditions for the process. Electron microscopy showed micrometer-sized (5-15 mu m) randomly distributed crystal aggregates, consisting of many 15-40-nm TiO2 nanoparticles. The obtained phase composition and chemical states of the doping elements are analyzed by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), infrared (IR) and Raman spectroscopies, and electron paramagnetic resonance (EPR). XRD displays in both samples (doped and pristine) the existence of only one crystalline phase-the tetragonal modification of TiO2-anatase. Further data assessment by means of Rietveld refinement allowed detection of a slight c lattice parameter and volume increase related to incorporation of the doping elements. XPS demonstrated the presence of carbon and sulfur as doping elements in the material. It was confirmed that carbon is in elemental form and also present in oxygen-containing compounds, which are adsorbed on the particle surface. The binding energy for sulfur electron core shell corresponds to the established data for sulfate compounds, where sulfur is in 6+ oxidation state. The synthesized S-and C-codoped TiO2 showed excellent photocatalytic performance during the degradation of organic dyes (rhodamine B, methylene blue), gas-phase oxidation of ethanol under visible light, and photocatalytic hydrogen generation from ethanol under ultraviolet light.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available