4.8 Article

Graphene-like holey Co3O4 nanosheets as a highly efficient catalyst for oxygen evolution reaction

Journal

NANO ENERGY
Volume 30, Issue -, Pages 267-275

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nanoen.2016.10.020

Keywords

Graphene-like; Holey; Co3O4; Catalyst; Oxygen evolution reaction

Funding

  1. Australian Research Council Discovery Project [DP160102627]
  2. University of Wollongong-Beihang University (UOW-BUAA) Joint Research Centre
  3. Discovery Early Career Researcher Award [DE150100280]
  4. UOW-VC Research Fellowship
  5. Australian Postgraduate Award
  6. International Postgraduate Research Scholarship

Ask authors/readers for more resources

Co3O4 nanosheets with a graphene-like holey structure are successfully synthesized through a bottom-up self assembly approach and utilized as a catalyst for the oxygen evolution reaction (OER). This unique nanostructure possesses a large fraction of low-coordinated surface atoms and highly accessible surface areas due to its atomic thickness and mesoporosity, which could provide abundant active sites and facilitate the electrode/electrolyte contact for OER catalysis. In addition, density functional theory (DFT) calculations reveal that the loss of the neighboring layers gives the ultrathin nanostructure remarkable lattice distortion, which leads to decreased energy barriers for facile mass conversion and transfer on the surface of the catalyst. As a result, the graphene-like holey Co3O4 nanosheets exhibit excellent OER catalytic performance with low onset potential of 0.617 V vs. Hg/HgO, high current density of 12.26 mA cm(-2) at 0.8 V vs. Hg/HgO, and long-term stability with negligible fading in current density after 2000 cycles, significantly outperforming the performances of conventional Co3O4 nanostructures and commercial IrO2. This unique graphene-like holey structure should be of great benefit for applications ranging from electronic devices to energy conversion and storage systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available