4.8 Article

High dispersion of 1-nm SnO2 particles between graphene nanosheets constructed using supercritical CO2 fluid for sodium-ion battery anodes

Journal

NANO ENERGY
Volume 28, Issue -, Pages 124-134

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nanoen.2016.08.044

Keywords

Tin oxide; Nanocomposites; Supercritical fluid; Anodes; Sodium-ion batteries

Funding

  1. Ministry of Science and Technology (MOST) of Taiwan

Ask authors/readers for more resources

Supercritical CO2 (SCCO2) fluid, which has gas-like diffusivity, extremely low viscosity, and near-zero surface tension, is used to synthesize SnO2 nanoparticles (a 1-nm diameter is achievable), which are uniformly dispersed and tightly anchored on graphene nanosheets (GNSs) and carbon nanotubes (CNTs). The discharge capacity, rate capability, and cyclic stability of the synthesized SnO2/GNS and SnO2/CNT nanocomposites are compared. This study also tunes the SCCO2 temperature (and thus its fluid density) and finds that this factor crucially affects the SnO2 size and distribution, determining the resulting electrochemical properties. The sodiation/desodiation mechanism of the SnO2/GNS electrode is examined using synchrotron ex situ X-ray absorption and X-ray diffraction techniques, together with transmission electron microscopy. We confirm that while the oxide conversion reaction is reversible, the sluggish Sn-Na alloying/dealloying reaction is responsible for the lower measured capacity as compared to the theoretical value. The first-cycle efficiency loss is mainly attributed to the trapping of Na in the electrode surface solid electrolyte interphase layer. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available