4.8 Article

High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn

Journal

NANO ENERGY
Volume 27, Issue -, Pages 230-237

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nanoen.2016.07.008

Keywords

Urethane elastic fiber core spun yarn; Stretchable; Wearable; Yarn supercapacitor

Funding

  1. Research Grants Council of Hong Kong SAR, China [CityU 109213]
  2. Science Technology and Innovation Committee of Shenzhen Municipality [JCYJ20140419115507579]
  3. Hong Kong Polytechnic University [1-BBA3]

Ask authors/readers for more resources

Yarn supercapacitors, as knittable and weavable energy storage devices, are attracting more and more attention in recent years. Similar to various yarns with different physical and mechanical properties available in textile industry, different yarn supercapacitors should be developed as well. However, as a device, stretchable yarn supercapacitors suffer a lot from limited stretchability, complicated and high cost fabrication, which greatly restrict their wide adoptions. Here, we use urethane elastic fiber core spun yarns (UY) with intrinsic high stretchability for the first time, as a wearable scaffold for hosting conductive CNT and electrocapacitive PPy to fabricate large-scale highly stretchable yarn electrodes via a simple two-step process (CNTs dipping and PPy electrodeposition). The yarn supercapacitor keeps the excellent stretchability of the UY without using any extra stretchy substrate or wavy structure as most stretchable yarn supercapacitors used, and at the same time, exhibits a high areal capacitance of 69 mF cm(-2) (normalized to two electrodes) as well as a good rate capacity. Furthermore, the capacitive performance of the yarn supercapacitor remains nearly unchanged even at a high strain of 80%. The high-performance stretchable yarn supercapacitor with the use of intrinsically stretchable yarns paves a way for the production of large-size fabrics for wearable electronic applications. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available