4.3 Article

Rationally designed nitrogen-doped carbon macroporous fibers with loading of single cobalt sites for efficient aqueous Zn-CO2 batteries

Related references

Note: Only part of the references are listed.
Article Chemistry, Multidisciplinary

Linker-Compensated Metal-Organic Framework with ElectronDelocalized Metal Sites for Bifunctional Oxygen Electrocatalysis

Yi Jiang et al.

Summary: This study proposes a linker compensation strategy to enhance the catalytic performance of metal-organic frameworks. By compensating the metal nodes, the performance of zinc-air batteries can be improved, resulting in higher current density and more stable voltage gap.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2022)

Article Chemistry, Multidisciplinary

Electroreduction of Carbon Dioxide Driven by the Intrinsic Defects in the Carbon Plane of a Single Fe-N4 Site

Wenpeng Ni et al.

Summary: By coupling with single-atom Fe-N-4 sites, the activity of intrinsic carbon defects can be significantly improved, leading to remarkable enhancements in electrocatalytic performance for CO2 reduction. The resulting catalyst shows high CO Faradaic efficiency, CO selectivity, and current density, demonstrating great potential for the development of rechargeable Zn-CO2 batteries.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

Rational Fabrication of Low-Coordinate Single-Atom Ni Electrocatalysts by MOFs for Highly Selective CO2 Reduction

Yan Zhang et al.

Summary: A single-atom Ni catalyst with different N coordination numbers was fabricated using a post-synthetic metal substitution strategy. The Ni-N-3-C catalyst showed significantly enhanced COOH* formation leading to accelerated CO2 reduction, achieving high CO Faradaic efficiency and excellent performance in Zn-CO2 battery. This work provides a new approach for modulation of coordination microenvironment in single-atom catalysts for CO2 utilization.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Review Chemistry, Multidisciplinary

Atomically Dispersed Reactive Centers for Electrocatalytic CO2 Reduction and Water Splitting

Huabin Zhang et al.

Summary: Developing electrocatalytic energy conversion technologies using single-atom catalysts holds great promise in addressing fossil fuel exhaustion and environmental issues. The rational design of coordination and microenvironments significantly impacts the reaction mechanisms and catalytic performance of SACs. Recent advancements in atomically dispersed reactive centers for electrocatalytic CO2 reduction and water splitting show potential for future research and application of SACs in energy conversion.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Physical

Simultaneous oxidative and reductive reactions in one system by atomic design

Yafei Zhao et al.

Summary: By introducing a yolk@shell catalyst design, single-atom catalysis for nitroaromatic hydrogenation and alkene epoxidation reactions can be achieved simultaneously, leading to the synthesis of amino alcohols. This approach provides a versatile strategy to integrate different single metal sites within one system for the continuous and straightforward synthesis of complex compounds for various challenging reactions.

NATURE CATALYSIS (2021)

Review Chemistry, Multidisciplinary

Linking the Dynamic Chemical State of Catalysts with the Product Profile of Electrocatalytic CO2 Reduction

Jiali Wang et al.

Summary: Research has revealed the critical impact of dynamic chemical states on CO2RR selectivity, providing new insights for fundamental understanding and efficient electrocatalyst design.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Non-Bonding Interaction of Neighboring Fe and Ni Single-Atom Pairs on MOF-Derived N-Doped Carbon for Enhanced CO2 Electroreduction

Long Jiao et al.

Summary: Through the direct pyrolysis of MOFs assembled with Fe and Ni-doped ZnO nanoparticles, a novel Fe-1-Ni-1-N-C catalyst with neighboring Fe and Ni single-atom pairs on nitrogen-doped carbon support has been precisely constructed. The synergism of neighboring Fe and Ni single-atom pairs significantly boosts the electrocatalytic reduction of CO2, surpassing catalysts with separate Fe or Ni single atoms. The study reveals the importance of the communicative effect between adjacent single atoms for improved catalysis in single-atom catalysts containing multiple metal species.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2021)

Article Chemistry, Multidisciplinary

Isolated Cobalt Centers on W18O49 Nanowires Perform as a Reaction Switch for Efficient CO2 Photoreduction

Huabin Zhang et al.

Summary: By successfully decorating isolated cobalt atoms onto the surface of ultrathin W18O49 nanowires, the charge carrier separation and electron transport in the catalytic system are greatly accelerated. The modification of the energy configuration of the W18O49@Co hybrid by surface decoration with cobalt atoms also enhances the redox capability of photoexcited electrons for CO2 reduction. The decorated cobalt atoms serve as the real active sites and act as a reaction switch to facilitate the reaction process.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2021)

Article Multidisciplinary Sciences

Exposing unsaturated Cu1-O2 sites in nanoscale Cu-MOF for efficient electrocatalytic hydrogen evolution

Weiren Cheng et al.

Summary: We have developed a promising electrocatalyst composed of Fe(OH)(x)@Cu-MOF nanoboxes, which exhibit superior activity and stability for the electrocatalytic hydrogen evolution reaction.

SCIENCE ADVANCES (2021)

Article Chemistry, Multidisciplinary

CO2 Bubble-Assisted Pt Exposure in PtFeNi Porous Film for High-Performance Zinc-Air Battery

Guanzhi Wang et al.

Summary: The novel dynamic CO2-bubble template approach was able to electrochemically fine-tune the exposed Pt active sites in PtFeNi porous films, leading to improved activity for oxygen reduction and evolution reactions. This method achieved high power density and durability in Zn-air batteries, demonstrating the efficiency of microstructure tuning for enhancing PGM catalyst activity.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2021)

Article Multidisciplinary Sciences

Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution

Zhiping Zeng et al.

Summary: Diatomic site catalysts utilize two adjacent atomic metal species for their complementary functionalities and synergistic actions. The orbital coupling of hetero-diatomic nickel-iron site boosts CO2 reduction reaction and oxygen evolution reaction.

NATURE COMMUNICATIONS (2021)

Article Multidisciplinary Sciences

A highly stable lithium metal anode enabled by Ag nanoparticle-embedded nitrogen-doped carbon macroporous fibers

Yongjin Fang et al.

Summary: In this study, a three-dimensional hybrid host was developed to inhibit dendritic lithium formation in lithium batteries, resulting in a more stable lithium plating/stripping behavior. When coupled with a commercial cathode, the assembled full cell showed high rate capability and stable cycling life.

SCIENCE ADVANCES (2021)

Review Chemistry, Multidisciplinary

Electrocatalysis for CO2 conversion: from fundamentals to value-added products

Genxiang Wang et al.

Summary: This article provides a comprehensive review of recent research progress on the selective electrocatalytic conversion of CO2 into value-added products. It covers the history and fundamental science of electrocatalytic CO2RR, the design, preparation, and performance evaluation of electrocatalysts, factors influencing the CO2RR, and associated theoretical calculations. Emphasis is placed on emerging trends in selective electrocatalytic conversion of CO2 and discussions on structure-performance relationships and mechanisms.

CHEMICAL SOCIETY REVIEWS (2021)

Article Chemistry, Multidisciplinary

Formation of Hierarchical FeCoS2-CoS2 Double-Shelled Nanotubes with Enhanced Performance for Photocatalytic Reduction of CO2

Yan Wang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Multidisciplinary Sciences

Dynamic electrocatalyst with current-driven oxyhydroxide shell for rechargeable zinc-air battery

Ya-Ping Deng et al.

NATURE COMMUNICATIONS (2020)

Article Chemistry, Multidisciplinary

In Situ Observation of the pH Gradient near the Gas Diffusion Electrode of CO2 Reduction in Alkaline Electrolyte

Xu Lu et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Review Chemistry, Multidisciplinary

Catalyst-electrolyte interface chemistry for electrochemical CO2 reduction

Young Jin Sa et al.

CHEMICAL SOCIETY REVIEWS (2020)

Article Chemistry, Multidisciplinary

Boosting alkaline hydrogen evolution: the dominating role of interior modification in surface electrocatalysis

Zhao Li et al.

ENERGY & ENVIRONMENTAL SCIENCE (2020)

Review Chemistry, Multidisciplinary

Recent Development of CO2 Electrochemistry from Li-CO2 Batteries to Zn-CO2 Batteries

Jiafang Xie et al.

ACCOUNTS OF CHEMICAL RESEARCH (2019)

Article Multidisciplinary Sciences

Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell

Shaoxuan Ren et al.

SCIENCE (2019)

Review Chemistry, Physical

Designing materials for electrochemical carbon dioxide recycling

Michael B. Ross et al.

NATURE CATALYSIS (2019)

Article Nanoscience & Nanotechnology

High temperature shockwave stabilized single atoms

Yonggang Yao et al.

NATURE NANOTECHNOLOGY (2019)

Article Chemistry, Multidisciplinary

Rechargeable Zn-CO2 Electrochemical Cells Mimicking Two-Step Photosynthesis

Xueyuan Wang et al.

ADVANCED MATERIALS (2019)

Article Chemistry, Multidisciplinary

Regulation of Coordination Number over Single Co Sites: Triggering the Efficient Electroreduction of CO2

Xiaoqian Wang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2018)

Article Nanoscience & Nanotechnology

Direct observation of noble metal nanoparticles transforming to thermally stable single atoms

Shengjie Wei et al.

NATURE NANOTECHNOLOGY (2018)

Review Chemistry, Multidisciplinary

Heterogeneous single-atom catalysis

Aiqin Wang et al.

NATURE REVIEWS CHEMISTRY (2018)

Article Chemistry, Multidisciplinary

InSitu Thermal Atomization To Convert Supported Nickel Nanoparticles into Surface-Bound Nickel Single-Atom Catalysts

Jian Yang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2018)

Article Chemistry, Multidisciplinary

Reversible Aqueous Zinc-CO2 Batteries Based on CO2-HCOOH Interconversion

Jiafang Xie et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2018)

Article Chemistry, Multidisciplinary

Ionic Exchange of Metal Organic Frameworks to Access Single Nickel Sites for Efficient Electroreduction of CO2

Changming Zhao et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2017)

Article Chemistry, Physical

Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways

Kiran Mathew et al.

JOURNAL OF CHEMICAL PHYSICS (2014)

Article Computer Science, Interdisciplinary Applications

Wavelet data analysis of EXAFS spectra

J. Timoshenko et al.

COMPUTER PHYSICS COMMUNICATIONS (2009)