4.8 Article

Controllable optical activity with non-chiral plasmonic metasurfaces

Journal

LIGHT-SCIENCE & APPLICATIONS
Volume 5, Issue -, Pages -

Publisher

CHINESE ACAD SCIENCES, CHANGCHUN INST OPTICS FINE MECHANICS AND PHYSICS
DOI: 10.1038/lsa.2016.96

Keywords

metasurfaces; optical activity; surface plasmon polaritons

Categories

Funding

  1. National Basic Research Program (973 Program) of China [2012CB921900]
  2. Chinese National Key Basic Research Special Fund [2011CB922003]
  3. Natural Science Foundation of China [11574163, 61378006, 11304163, 91323304]
  4. Program for New Century Excellent Talents in University [NCET-13-0294]
  5. 111 project [B07013]
  6. National Science Fund for Talent Training in Basic Sciences [J1103208]

Ask authors/readers for more resources

Optical activity is the rotation of the plane of linearly polarized light along the propagation direction as the light travels through optically active materials. In existing methods, the strength of the optical activity is determined by the chirality of the materials, which is difficult to control quantitatively. Here we numerically and experimentally investigated an alternative approach to realize and control the optical activity with non-chiral plasmonic metasurfaces. Through judicious design of the structural units of the metasurfaces, the right and left circular polarization components of the linearly polarized light have different phase retardations after transmitting through the metasurfaces, leading to large optical activity. Moreover, the strength of the optical activity can be easily and accurately tuned by directly adjusting the phase difference. The proposed approach based on non-chiral plasmonic metasurfaces exhibits large optical activity with a high controllable degree of freedom, which may provide more possibilities for applications in photonics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available