4.6 Article

Lipopolysaccharide -mediated resistance to host antimicrobial peptides and hemocyte- derived reactive-oxygen species are the major Providencia alcalifaciens virulence factors in Drosophila melanogaster

Journal

PLOS PATHOGENS
Volume 18, Issue 9, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1010825

Keywords

-

Funding

  1. Max Planck Society
  2. Deutsche Forschungsgemeinschaft (DFG) [IA 81/2-1]

Ask authors/readers for more resources

This study investigated the virulence mechanisms and corresponding insect host defenses of Providencia bacteria. The study revealed that Providencia uses lipopolysaccharide (LPS)-mediated resistance to antimicrobial peptides (AMPs) and avoidance of reactive oxygen species (ROS) to evade host immune responses.
Bacteria from the genus Providencia are ubiquitous Gram-negative opportunistic pathogens, causing travelers' diarrhea, urinary tract, and other nosocomial infections in humans. Some Providencia strains have also been isolated as natural pathogens of Drosophila melanogaster. Despite clinical relevance and extensive use in Drosophila immunity research, little is known about Providencia virulence mechanisms and the corresponding insect host defenses. To close this knowledge gap, we investigated the virulence factors of a representative Providencia species-P. alcalifaciens which is highly virulent to fruit flies and amenable to genetic manipulations. We generated a P. alcalifacienstransposon mutant library and performed an unbiased forward genetics screen in vivo for attenuated mutants. Our screen uncovered 23 mutants with reduced virulence. The vast majority of them had disrupted genes linked to lipopolysaccharide (LPS) synthesis or modifications. These LPS mutants were sensitive to cationic antimicrobial peptides (AMPs) in vitro and their virulence was restored in Drosophila mutants lacking most AMPs. Thus, LPS-mediated resistance to host AMPs is one of the virulence strategies of P. alcalifaciens. Another subset of P. alcalifaciens attenuated mutants exhibited increased susceptibility to reactive oxygen species (ROS) in vitro and their virulence was rescued by chemical scavenging of ROS in flies prior to infection. Using genetic analysis, we found that the enzyme Duox specifically in hemocytes is the source of bactericidal ROS targeting P. alcalifaciens. Consistently, the virulence of ROS-sensitive P. alcalifaciens mutants was rescued in flies with Duox knockdown in hemocytes. Therefore, these genes function as virulence factors by helping bacteria to counteract the ROS immune response. Our reciprocal analysis of host-pathogen interactions between D. melanogaster and P. alcalifaciens identified that AMPs and hemocyte-derived ROS are the major defense mechanisms against P. alcalifaciens, while the ability of the pathogen to resist these host immune responses is its major virulence mechanism. Thus, our work revealed a host-pathogen conflict mediated by ROS and AMPs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available