3.8 Proceedings Paper

Strawberry picking point localization ripeness and weight estimation

Publisher

IEEE
DOI: 10.1109/ICRA46639.2022.9812303

Keywords

-

Ask authors/readers for more resources

Labor shortage and difficulties in labor management have led to the emergence of robotic systems for selective strawberry harvesting. Accurate fruit picking perception is a crucial component of such systems. Researchers have developed two novel datasets annotated with information on picking points, key points, and the weight and size of strawberries. They also propose a new baseline model for weight estimation that outperforms existing deep networks.
Labour shortage, difficulties in labour management, the digitalization of fruit production pipeline to reduce the fruit production costs have made robotic systems for selective harvesting of strawberries an important industry and academic research. One of the important components of such technologies yet to be developed is fruit picking perception. For picking strawberries, a robot needs to infer the location of picking points from the images of strawberries. Moreover, the size and weight of strawberries to be picked can help the robot to place the picked strawberries in proper punnets directly to be delivered to customers in supermarkets. This can save significant time and packing costs in packhouses. Geometry-based approaches are the most common approach to determine the picking point but they suffer from inaccuracies due to noise, occlusion, and varying shape and orientation of the berries. In contrast, we present two novel datasets of strawberries annotated with picking points, key-points (such as the shoulder points, the contact point between the calyx and flesh, and the point on the flesh farthest from the calyx), and the weight and size of the berries. We performed experiments with Detectron-2, which is an extended version of Mask-RCNN with key-points detection capability. The results show that the key-points detection approach works well for picking and grasping point localization. The second dataset also presents the dimensions and weight of strawberries. Our novel baseline model for weight estimation outperforms many state-of-the-art deep networks. The datasets and annotations are available at https://github.com/imanlab/strawberry-pp-w-r-dataset.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available