4.6 Article

New family of room temperature quantum spin Hall insulators in two-dimensional germanene films

Journal

JOURNAL OF MATERIALS CHEMISTRY C
Volume 4, Issue 10, Pages 2088-2094

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6tc00160b

Keywords

-

Funding

  1. National Natural Science Foundation of China [11274143, 11434006, 61172028, 11304121]
  2. Natural Science Foundation of Shandong Province [ZR2013AL002]
  3. Research Fund for the Doctoral Program of University of Jinan [XBS1433]

Ask authors/readers for more resources

Searching for two-dimensional (2D) group IV films with high structural stability and large-gaps is crucial for the realization of a dissipationless transport edge state using the quantum spin Hall effect (QSHE). Based on first-principles calculations, we predict that 2D germanene decorated with ethynyl-derivatives (GeC2X; X = H, F, Cl, Br, I) can be a topological insulator (TI) with a large band-gap for room-temperature applications. Both GeC2I and GeC2Br films are intrinsic TIs with a gap reaching up to 180 meV over a wide range, while GeC2H, GeC2F, and GeC2Cl transform from trivial to nontrivial phases under tensile strain. This topological characteristic can be confirmed by s-p(xy) band inversion, topological invariant Z(2), and time-reversal symmetry protected helical edge states. Notably, the characteristic properties of edge states, such as the Fermi velocity and edge shape, can be tuned by edge modifications. Furthermore, we demonstrate that the h-BN sheet is an ideal substrate for the experimental realization of GeC2X, maintaining their nontrivial topology. Considering their higher thermo-stability, these GeC2X films may be good QSHE platforms for topological electronic device design and fabrication in spintronics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available