4.6 Article

Dual cellular stimuli-responsive hydrogel nanocapsules for delivery of anticancer drugs

Journal

JOURNAL OF MATERIALS CHEMISTRY B
Volume 4, Issue 28, Pages 4922-4933

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6tb00651e

Keywords

-

Funding

  1. National Natural Science Foundation of China [81471775, 51133004, 81361140343]
  2. Fundamental Research Funds for the Central Universities [2015SCU04A31]
  3. Joint Sino-German Research Project [GZ905]
  4. Sichuan University Start-Up Research Found [YJ 201405]

Ask authors/readers for more resources

In this work, we report dual cellular environmental stimuli-responsive hydrogel nanocapsules (HA-NCs) for delivery of an anticancer drug (doxorubicin, DOX). This nanocapsule drug delivery system was specially designed to be triggered by stimuli in intra-cellular environments, specifically high glutathione (GSH) concentration and low pH. Biocompatible hyaluronan was used as the basic nanocapsule shell building material. Chemical modifications were conducted in order to functionalize it; specifically, GSH cleavable crosslinking sites and pH responsive expansion sites were introduced. After passive delivery to tumor sites via an enhanced permeation and retention (EPR) effect and cellular uptake, the nanocapsule shells underwent a swelling/disassembly process due to high GSH concentration (e.g., 10 mM), which induced cleavage of disulfide (S-S) bonds, and low pH (e.g., pH 5), which caused water influx associated with deprotection of the acetal groups. This process enabled rupture of the hydrogel nanocapsules and therefore resulted in release of the encapsulated payloads. This hydrogel nanocapsule system exhibited a great ability to release the vast majority of the encapsulated DOX in tumor cells, as proven by the remarkably (4.7-fold) accelerated drug release rate within tumor cells (pH 5.0, GSH 10 mM), in sharp contrast to the drug release rate under physiological conditions (pH 7.4, GSH 0). In vitro bio-evaluation showed the good biocompatibility of the nanocapsule carriers and their efficient cancer cell growth inhibition activity after drug encapsulation. In vivo studies confirmed that the DOX containing nanocapsules (DOX/HA-NCs) had comparable antitumor efficiency and greatly reduced side effects as compared with free DOX (DOX center dot HCl).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available