4.6 Article

Efficient ternary blend all-polymer solar cells with a polythiophene derivative as a hole-cascade material

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 4, Issue 38, Pages 14752-14760

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ta05932e

Keywords

-

Funding

  1. National Natural Science Foundation of China (NSFC) [91333204, 51203168, 51422306, 51503135, 51573120]
  2. Priority Academic Program Development of Jiangsu Higher Education Institutions
  3. Jiangsu Provincial Natural Science Foundation [BK20150332]
  4. Natural Science Foundation of the Jiangsu Higher Education Institutions of China [15KJB430027]
  5. Ministry of Science and Technology of China (973 project) [2014CB643501]

Ask authors/readers for more resources

Ternary blending is one of the effective strategies to broaden the complementary absorption range and smooth the energy level at the donor/acceptor interface for achieving high efficiency bulk heterojunction (BHJ) polymer solar cells (PSCs). In this study, we report efficient ternary blend all-polymer solar cells (all-PSCs) with complementary absorption bands based on two polymer donors PTB7-Th and PBDD-ff4T and one polymer acceptor N2200. The polythiophene derivative PBDD-ff4T as a hole-cascade material plays a bridging role in energy levels between PTB7-Th and N2200, and thus provides more efficient channels for charge transfer. The ternary all-PSCs with 10 wt% PBDD-ff4T content show efficient photon harvesting, enhanced charge mobility and better active layer morphology due to the induced crystallization of PTB7-Th by the inserted PBDD-ff4T in the donor domains. As a result, the device without any extra treatments exhibits an optimized power conversion efficiency (PCE) of 7.2% with an open circuit voltage (V-oc) of 0.82 V, a short circuit current density (J(sc)) of 15.7 mA cm(-2), and a fill factor (FF) of 56%. While the PCEs are 5.9% and 4.2% for the all-PSCs based on the binary blends PTB7-Th: N2200 and PBDD-ff4T: N2200, respectively. This PCE of 7.2% is one of the highest values reported in the literature so far for ternary all-PSCs and polythiophene derivative-based all-PSCs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available