4.6 Article

The thermodynamic stability of intermediate solid solutions in LiFePO4 nanoparticles

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 4, Issue 15, Pages 5436-5447

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ta10498j

Keywords

-

Funding

  1. NorthEast Center for Chemical Energy Storage (NECCES), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0012583]
  2. National Science Foundation [OCI-1053575, TG-DMR97008S, TG-DR110007]
  3. Turkish Scientific and Technical Research Council, TUBITAK [BIDEB 2219, 113F091]

Ask authors/readers for more resources

Theoretical predictions from first principles and recent advances in in situ electrochemical characterization techniques have confirmed the presence of solid-solution states during electrochemical (de) lithiation of LiFePO4 nanoparticles. Surprisingly, however, such thermodynamically unfavorable solid solution states have been observed at rates as low as 0.1C. Given the high diffusivity of Li in LiFePO4 and the thermodynamic instability of homogeneous solid solution states, spinodal decomposition to a thermodynamically favorable two-phase state is expected to occur on time scales as rapid as 1-100 ms. In this paper, we resolve this apparent paradox by demonstrating that, given the symmetry of the low-energy solid-solution Li/Va orderings and the 1D character of Li diffusion, spinodal decomposition from a solid solution preferentially leads to the formation of a diffuse ac interface with a large intermediate solid-solution region, as opposed to the commonly assumed bc interface. Our first principles predictions not only rationalize the persistence of solid-solution states at low-to-moderate C-rates in high-rate LiFePO4 electrodes, but also explain the observations of large intermediate solid-solution regions at an ac interface in single LixFePO4 particles quenched from a high-temperature solid solution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available