4.6 Article

Robust nano-architectured composite thin films for a low-temperature solid oxide fuel cell cathode

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 4, Issue 24, Pages 9394-9402

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ta00052e

Keywords

-

Funding

  1. Global Frontier R&D Program on Center for Multiscale Energy System - National Research Foundation under the Ministry of Science, ICT Future, Korea [2011-0031569]
  2. National Research Foundation of Korea (NRF) - Korea Government (Ministry of Science, ICT & Future Planning) [2014R1A1A1003008]

Ask authors/readers for more resources

Thin-film based, low temperature solid oxide fuel cells (LT-SOFCs) have gained much attention due to their capability to reduce the operating temperature (<450 degrees C) and the ensuing extended life and reduced cost, compared to conventional SOFCs. While highly porous and continuously connected Pt thin films are viewed as an attractive cathode, they are readily apt to sinter and grow into larger, isolated crystallites upon annealing, leading to severe degradation of the cathode performance over time. Here, we address this issue by fabricating a post-encapsulated composite structure, in which gas-permeable and catalytically active solid electrolytes surround porous Pt electrodes. Nanoporous Pt thin films deposited onto a yttriastabilized ZrO2 (YSZ) single-crystal substrate are uniformly coated with Sm-doped CeO2 (SDC) via a simple, cost-effective and scalable coating method known as cathodic electrochemical deposition (CELD). Physical characterization of the nanostructured Pt/SDC composite thin films is done using a range of tools, in this case SEM, TEM, XRD and ICP-MS. AC impedance spectroscopy (ACIS) of symmetric cells (cathode| electrolyte| cathode) with SDC coatings reveals that the enhanced Pt-SDC interactions led to exceptionally high ORR activity and outstanding thermal stability. These observations provide new directions for the achievement of a robust and catalytically active LT-SOFC cathode through modification of the metal surface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available