4.6 Article

Sub-100 nm TiO2 tubular architectures for efficient solar energy conversion

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 4, Issue 24, Pages 9375-9380

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ta03156k

Keywords

-

Ask authors/readers for more resources

Significant enhancement in the performance of solar energy conversion devices has historically been achieved through optimized device scaling. Scaling trends will be extremely difficult to maintain unless new materials and device structures are discovered. Herein, sub-100 nm TiO2 tubular architectures were synthesized, for the first time, via galvanostatic anodization. The fabricated nanotubes are partially crystalline with high photoactivity towards water splitting and solar-to-electric conversion. Mott-Schottky, transient photocurrent and incident photon-to-current efficiency (IPCE) analyses indicate a faster electron transfer at the nanotube/electrolyte interface. The sub-100 nm tubes showed a maximum conversion efficiency of 9.3% upon their use in dye-sensitized solar cell devices. The concept of short nanotubes should be useful for the future use of thematerial in various applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available