4.4 Article

Partially acoustic dark matter, interacting dark radiation, and large scale structure

Journal

JOURNAL OF HIGH ENERGY PHYSICS
Volume -, Issue 12, Pages -

Publisher

SPRINGER
DOI: 10.1007/JHEP12(2016)108

Keywords

Cosmology of Theories beyond the SM; Beyond Standard Model

Funding

  1. National Science Foundation [PHY-1315155, PHY-1066293]
  2. Maryland Center for Fundamental Physics
  3. The Kwanjeong Educational Foundation
  4. Perimeter Institute for Theoretical Physics
  5. Government of Canada through Industry Canada
  6. Province of Ontario through the Ministry of Research and Innovation
  7. US Department of Energy [DE-SC0010102]
  8. Division Of Physics
  9. Direct For Mathematical & Physical Scien [1620074] Funding Source: National Science Foundation

Ask authors/readers for more resources

The standard paradigm of collisionless cold dark matter is in tension with measurements on large scales. In particular, the best fit values of the Hubble rate H-0 and the matter density perturbation sigma(8) inferred from the cosmic microwave background seem inconsistent with the results from direct measurements. We show that both problems can be solved in a framework in which dark matter consists of two distinct components, a dominant component and a subdominant component. The primary component is cold and collisionless. The secondary component is also cold, but interacts strongly with dark radiation, which itself forms a tightly coupled flid. The growth of density perturbations in the subdominant component is inhibited by dark acoustic oscillations due to its coupling to the dark radiation, solving the sigma(8) problem, while the presence of tightly coupled dark radiation ameliorates the H-0 problem. The subdominant component of dark matter and dark radiation continue to remain in thermal equilibrium until late times, inhibiting the formation of a dark disk. We present an example of a simple model that naturally realizes this scenario in which both constituents of dark matter are thermal WIMPs. Our scenario can be tested by future stage-IV experiments designed to probe the CMB and large scale structure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available