4.7 Article

Network Representation Learning: From Preprocessing, Feature Extraction to Node Embedding

Journal

ACM COMPUTING SURVEYS
Volume 55, Issue 2, Pages -

Publisher

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3491206

Keywords

Network representation learning; data preprocessing; feature extraction; node embedding

Ask authors/readers for more resources

This article reviews the design principles and different node embedding techniques for network representation learning (NRL) over homogeneous networks. It introduces a unified reference framework for comparing different node embedding algorithms and highlights representative methods and models used at different stages of the node embedding model learning process. This survey not only helps researchers and practitioners gain an in-depth understanding of different NRL techniques but also provides practical guidelines for designing and developing the next generation of NRL algorithms and systems.
Network representation learning (NRL) advances the conventional graph mining of social networks, knowledge graphs, and complex biomedical and physics information networks. Dozens of NRL algorithms have been reported in the literature. Most of them focus on learning node embeddings for homogeneous networks, but they differ in the specific encoding schemes and specific types of node semantics captured and used for learning node embedding. This article reviews the design principles and the different node embedding techniques for NRL over homogeneous networks. To facilitate the comparison of different node embedding algorithms, we introduce a unified reference framework to divide and generalize the node embedding learning process on a given network into preprocessing steps, node feature extraction steps, and node embedding model training for an NRL task such as link prediction and node clustering. With this unifying reference framework, we highlight the representative methods, models, and techniques used at different stages of the node embedding model learning process. This survey not only helps researchers and practitioners gain an in-depth understanding of different NRL techniques but also provides practical guidelines for designing and developing the next generation of NRL algorithms and systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available