4.3 Article

An insight into differential protein abundance throughout Leishmania donovani promastigote growth and differentiation

Journal

INTERNATIONAL MICROBIOLOGY
Volume 26, Issue 1, Pages 25-42

Publisher

SPRINGER
DOI: 10.1007/s10123-022-00259-4

Keywords

Leishmania donovani; Promastigotes; Protein levels; Stress; Antigens

Ask authors/readers for more resources

This study investigates the protein levels during the differentiation process of Leishmania donovani promastigotes and identifies proteins associated with parasite survival and immunostimulation. These proteins may serve as potential candidates for disease control and vaccine development.
Leishmania donovani causes anthroponotic visceral leishmaniasis, responsible for about 50,000 annual deaths worldwide. Current therapies have considerable side effects. Drug resistance has been reported and no vaccine is available nowadays. The development of undifferentiated promastigotes in the sand fly vector's gut leads to the promastigote form that is highly infective to the mammalian host. Fully differentiated promastigotes play a crucial role in the initial stages of mammalian host infection before internalization in the host phagocytic cell. Therefore, the study of protein levels in the promastigote stage is relevant for disease control, and proteomics analysis is an ideal source of vaccine candidate discovery. This study aims to get insight into the protein levels during the differentiation process of promastigotes by 2DE-MALDI-TOF/TOF. This partial proteome analysis has led to the identification of 75 proteins increased in at least one of the L. donovani promastigote differentiation and growth phases. This study has revealed the differential abundance of said proteins during growth and differentiation. According to previous studies, some are directly involved in parasite survival or are immunostimulatory. The parasite survival-related proteins are ascorbate peroxidase; cystathionine beta synthase; an elongation factor 1 beta paralog; elongation factor 2; endoribonuclease L-PSP; an iron superoxide dismutase paralog; GDP-mannose pyrophosphorylase; several heat shock proteins-HSP70, HSP83-17, mHSP70-rel, HSP110; methylthioadenosine phosphorylase; two thiol-dependent reductase 1 paralogs; transitional endoplasmic reticulum ATPase; and the AhpC thioredoxin paralog. The confirmed immunostimulatory proteins are the heat shock proteins, enolase, and protein kinase C receptor analog. The potential immunostimulatory molecules according to findings in patogenic bacteria are fructose-1,6-diphophate aldolase, dihydrolipoamide acetyltransferase, isocitrate dehydrogenase, pyruvate dehydrogenase E1 alpha and E1 beta subunits, and triosephosphate isomerase. These proteins may become disease control candidates through future intra-vector control methods or vaccines.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available