4.5 Article

Crucial role of Arabidopsis glutaredoxin S17 in heat stress response revealed by transcriptome analysis

Journal

FUNCTIONAL PLANT BIOLOGY
Volume 50, Issue 1, Pages 58-70

Publisher

CSIRO PUBLISHING
DOI: 10.1071/FP22002

Keywords

Arabidopsis; auxin response; cellular signalling; global warming; glutaredoxin; heat stress factor; redox regulation; transcriptome

Categories

Ask authors/readers for more resources

This study reveals the critical role of AtGRXS17 in plant response to heat stress, controlling the heat stress response pathways through transcriptional regulation.
Heat stress can have detrimental effects on plant growth and development. However, the mechanisms by which the plant is able to perceive changes in ambient temperature, transmit this information, and initiate a temperature-induced response are not fully understood. Previously, we showed that heterologous expression of an Arabidopsis thaliana L. monothiol glutaredoxin AtGRXS17 enhances thermotolerance in various crops, while disruption of AtGRXS17 expression caused hypersensitivity to permissive temperature. In this study, we extend our investigation into the effect of AtGRXS17 and heat stress on plant growth and development. Although atgrxs17 plants were found to exhibit a slight decrease in hypocotyl elongation, shoot meristem development, and root growth compared to wild-type when grown at 22 degrees C, these growth phenotypic differences became more pronounced when growth temperatures were raised to 28 degrees C. Transcriptome analysis revealed significant changes in genome-wide gene expression in atgrxs17 plants compared to wild-type under conditions of heat stress. The expression of genes related to heat stress factors, auxin response, cellular communication, and abiotic stress were altered in atgrxs17 plants in response to heat stress. Overall, our findings indicate that AtGRXS17 plays a critical role in controlling the transcriptional regulation of plant heat stress response pathways.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available