4.6 Article

Unravelling the impact of unusual heating rate, dose-response and trap parameters on the thermoluminescence of Sm3+activated GdAl3(BO3)4 phosphors exposed to beta particle irradiation

Journal

RADIATION PHYSICS AND CHEMISTRY
Volume 213, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.radphyschem.2023.111211

Keywords

Thermoluminescence; Unusual heating rate; Linearity

Ask authors/readers for more resources

The thermoluminescence properties of GAB samples doped with different concentrations of Sm3+ were studied. Two TL glow peaks were observed, with the intensity of one peak increasing with a faster heating rate. By calculating the activation energies and conducting dose-response experiments, the potential of this material for radiation dosimetry applications was demonstrated.
The thermoluminescence of GdAl3(BO3)4 (GAB) doped with various concentrations of Sm3+ (i.e. from 0.5 to 7 wt %), prepared by gel combustion, was studied. TL glow peaks at 78 degrees C and 225 degrees C are observed. The intensity of the glow peak at 225 degrees C increased with a faster heating rate. To gain insight into the trap activation energies, the methods of Hoogenstraaten and Booth-Bohun-Parfianovitch were used, where the calculated activation energies are 0.57 eV and 0.60 eV for Peak I and 1.69 eV and 1.71 eV for Peak II respectively. The dose-response of GAB:0.5 wt%Sm3+ demonstrates robust linearity up to 40 Gy, with a strong correlation coefficient of 0.999. Both TM-Tstop combined with the Initial Rise (IR) and Computerized Glow Curve Deconvolution (CGCD) techniques were employed, which revealed six overlapping glow peaks beneath the main peaks. Additionally, the results suggest that the TL signal can be efficiently exploited for radiation dosimetry applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available