4.7 Article

Multifunctional carboxymethyl cellulose/graphene oxide/polyaniline hybrid thin film for adsorptive removal of Cu(II) and oxytetracycline antibiotic from wastewater

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.ijbiomac.2023.126699

Keywords

CMC/GO/PANI thin film; Emerging pollutant; Drug heavy metals; Water purification

Ask authors/readers for more resources

In this study, a multifunctional thin film was synthesized and utilized for the adsorptive scavenging of antibiotics and metal ions from contaminated wastewater. The results showed that the hybrid thin film had higher adsorption capacity and could be reused multiple times.
The antibiotics and metal ions in the contaminated water bodies must be removed using appropriate methods for sustainable development. In this study, the multifunctional carboxymethyl cellulose/graphene oxide/polyaniline (CMC/GO/PANI) hybrid thin film was synthesized and utilized for adsorptive scavenging of (Cu(II) and oxytetracycline (OTC) from wastewater. The prepared thin films' morphology, chemical compositions, functionality, and surface charge were analyzed by well-known physicochemical techniques. The adsorption process of the selected model pollutants was examined as a function of reaction time, Cu(II), and OTC solution pH, concentrations, and temperatures. Results showed that CMC/GO/PANI hybrid thin film had higher Cu(II) and OTC adsorption than CMC, GO/CMC, and PANI/CMP thin films due to the multifunctional synergetic effect. The adsorption kinetic data were fitted to the pseudo-second-order model. Redlich-Peterson isotherm model well interpreted Cu(II) and OTC scavenging equilibrium data. Energetically, the adsorption was spontaneous and endothermic for both pollutants. The multifunctional CMC/GO/PANI thin film was recycled and reused seven times during adsorption-desorption cycles. The study outcomes demonstrated that CMC/GO/PANI thin film could be reused multiple times for large-scale wastewater purification.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available