4.7 Article

Theoretical and experimental investigations on free vibration characteristics of arbitrary spatially closed-coupled plates

Journal

JOURNAL OF SOUND AND VIBRATION
Volume 570, Issue -, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2023.118007

Keywords

Free vibration; Spatially closed-coupled plates with curved; edges; Arbitrary connection and boundary conditions; Virtual spring stiffness functions; Jacobian differential quadrature method; Hammer modal test

Ask authors/readers for more resources

This paper presents a semi-analytical method and experiments to investigate the free vibration characteristics of closed-coupled plates with arbitrary spatial coupling angles and curved edges. By combining different boundary and spatial coupling connection conditions, semi-analytical solution formulas for the entire vibration model are established. The accuracy and applicability of the method are verified through experimental tests, comparisons with other research results, and finite element method simulations. Furthermore, the effects of spatial geometric parameters on the free vibration characteristics of closed-coupled plates with curved edges are thoroughly studied.
A semi-analytical method and related experiments are present in this paper to investigate the free vibration characteristics of the closed-coupled plates with arbitrary spatial coupling angles and curved edges, which are the widely used structural form but researched for the first time. By combining the penalty function method with flexible setting virtual spring stiffness functions and the comprehensive relative motion relation matrices along the edges of the plates system, various types of boundary and spatial coupling connection conditions in practical engineering can be constructed. The semi-analytical solution formulas for the entire vibration model are established by using the first-order shear deformation theory (FSDT) and the two-dimensional Jacobian differential quadrature method (JDQM). To fulfill the requirements of integral operations for displacement approximation functions, the irregular domain mapping technique is employed to transform the irregular solving domain into the regular basic domain. The accuracy and applicability of the present method in predicting eigenfrequencies and mode shapes are proved by hammer modal tests concerning four pyramid/frustum-like built-up plates, comparisons with results from the open literature, as well as the finite element method (FEM) simulations of several specially designed cases. Moreover, many meaningful conclusions are drawn regarding the effects of spatial geometric parameters on the free vibration characteristics of spatially closed-coupled plates with curved edges.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available