4.8 Article

Stepwise assembly of thiacalix[4]arene-protected Ag/Ti bimetallic nanoclusters: accurate identification of catalytic Ag sites in CO2 electroreduction

Journal

CHEMICAL SCIENCE
Volume 14, Issue 37, Pages 10212-10218

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3sc02793g

Keywords

-

Ask authors/readers for more resources

In this study, a unique Ag/Ti bimetallic nanocluster (Ti8Ag8) was synthesized as an exceptional CO2 electroreduction catalyst, surpassing the performance of a Ti2Ag4 cluster. The study provides valuable insights into the accurate identification of catalytic sites in bimetallic nanoclusters and opens up promising avenues for efficient CO2 reduction catalyst design.
The accurate identification of catalytic sites in heterogeneous catalysts poses a significant challenge due to the intricate nature of controlling interfacial chemistry at the molecular level. In this study, we introduce a novel strategy to address this issue by utilizing a thiacalix[4]arene (TC4A)-protected Ti-oxo core as a template for loading Ag1+ ions, leading to the successful synthesis of a unique Ag/Ti bimetallic nanocluster denoted as Ti8Ag8. This nanocluster exhibits multiple surface-exposed Ag sites and possesses a distinctive core-shell structure, consisting of a {Ti-4@Ag-8(TC(4)A)(4)} core housing a {Ti2O2@Ag-4(TC4A)(2)} motif and two {Ti@Ag-2(TC4A)} motifs. To enable a comprehensive analysis, we also prepared a Ti2Ag4 cluster with the same {Ti2O2@Ag-4(TC4A)(2)} structure found within Ti8Ag8. The structural disparities between Ti8Ag8 and Ti2Ag4 provide an excellent platform for a comparison of catalytic activity at different Ag sites. Remarkably, Ti8Ag8 exhibits exceptional performance in the electroreduction of CO2 (eCO(2)RR), showcasing a CO faradaic efficiency (FECO) of 92.33% at -0.9 V vs. RHE, surpassing the FECO of Ti2Ag4 (69.87% at -0.9 V vs. RHE) by a significant margin. Through density functional theory (DFT) calculations, we unveil the catalytic mechanism and further discover that Ag active sites located at {Ti@Ag-2(TC4A)} possess a higher e(d) value compared to those at {Ti2O2@Ag-4(TC4A)(2)}, enhancing the stabilization of the *COOH intermediate during the eCO(2)RR. This study provides valuable insights into the accurate identification of catalytic sites in bimetallic nanoclusters and opens up promising avenues for efficient CO2 reduction catalyst design.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available