4.6 Article

Anonymous conference key agreement in linear quantum networks

Journal

QUANTUM
Volume 7, Issue -, Pages -

Publisher

VEREIN FORDERUNG OPEN ACCESS PUBLIZIERENS QUANTENWISSENSCHAF

Keywords

-

Ask authors/readers for more resources

Sharing multi-partite quantum entanglement allows for diverse secure communication tasks. In this work, an anonymous CKA protocol for three parties is proposed, implemented in a highly practical network setting using a linear cluster state among quantum nodes. The protocol protects the identities of the participants and contributes to identifying feasible quantum communication tasks for network architectures beyond point-to-point.
Sharing multi-partite quantum entanglement between parties allows for diverse secure communication tasks to be performed. Among them, conference key agreement (CKA) - an extension of key distribution to multiple parties - has received much attention recently. Interestingly, CKA can also be performed in a way that protects the identities of the participating parties, therefore providing anonymity. In this work, we propose an anonymous CKA protocol for three parties that is implemented in a highly practical network setting. Specifically, a line of quantum nodes is used to build a linear cluster state among all nodes, which is then used to anonymously establish a secret key between any three of them. The nodes need only share maximally entangled pairs with their neighbours, therefore avoiding the necessity of a central server sharing entangled states. This linear chain setup makes our protocol an excellent candidate for implementation in future quantum networks. We explicitly prove that our protocol protects the identities of the participants from one another and perform an analysis of the key rate in the finite regime, contributing to the quest of identifying feasible quantum communication tasks for network architectures beyond point-to-point.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available