4.7 Article

A Review of Power Electronics for Grid Connection of Utility-Scale Battery Energy Storage Systems

Journal

IEEE TRANSACTIONS ON SUSTAINABLE ENERGY
Volume 7, Issue 4, Pages 1778-1790

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSTE.2016.2586941

Keywords

Battery energy storage system; dc-ac converter; dc-dc converter; power conversion; power electronics

Ask authors/readers for more resources

The increasing penetration of renewable energy sources (RES) poses a major challenge to the operation of the electricity grid owing to the intermittent nature of their power output. The ability of utility-scale battery energy storage systems (BESS) to provide grid support and smooth the output of RES in combination with their decrease in cost has fueled research interest in this technology over the last couple of years. Power electronics (PE) is the key enabling technology for connecting utility-scale BESS to the medium-voltage grid. PE ensure energy is delivered while complying with grid codes and dispatch orders. Simultaneously, the PE must regulate the operating point of the batteries, thus for instance preventing overcharge of batteries. This paper presents a comprehensive review of PE topologies for utility BESS that have been proposed either within industry or the academic literature. Moreover, a comparison of the presently most commercially viable topologies is conducted in terms of estimated power conversion efficiency and relative cost.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available