4.7 Article

Coupling Pumped Hydro Energy Storage With Unit Commitment

Journal

IEEE TRANSACTIONS ON SUSTAINABLE ENERGY
Volume 7, Issue 2, Pages 786-796

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSTE.2015.2498555

Keywords

Flexibility; unit commitment; pumped hydro energy storage; stochastic optimization; interval optimization; wind energy

Ask authors/readers for more resources

Renewable electricity generation not only provides affordable and emission-free electricity but also introduces additional complexity in the day-ahead planning procedure. To address the stochastic nature of renewable generation, system operators must schedule enough controllable generation to have the flexibility required to compensate unavoidable real-time mismatches between the production and consumption of electricity. This flexibility must be scheduled ahead of real-time and comes at a cost, which should be minimized without compromising the operational reliability of the system. Energy storage facilities, such as pumped hydro energy storage (PHES), can respond quickly to mismatches between demand and generation. Hydraulic constraints on the operation of PHES must be taken into account in the day-ahead scheduling problem, which is typically not done in deterministic models. Stochastic optimization enhances the procurement of flexibility, but requires more computational resources than conventional deterministic optimization. This paper proposes a deterministic and an interval unit commitment formulation for the co-optimization of controllable generation and PHES, including a representation of the hydraulic constraints of the PHES. The proposed unit commitment (UC) models are tested against a stochastic UC formulation on a model of the Belgian power system to compare the resulting operational cost, reliability, and computational requirements. The cost-effective regulating capabilities offered by the PHES yield significant operational cost reductions in both models, while the increase in calculation times is limited.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available