4.6 Article

Unfolding the secrets of microbiome (Symbiodiniaceae and bacteria) in cold-water coral

Journal

MICROBIOLOGY SPECTRUM
Volume -, Issue -, Pages -

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/spectrum.01315-23

Keywords

cold-water coral; microbiome; symbiosis; Symbiodiniaceae; bacteria

Categories

Ask authors/readers for more resources

Recent deep-ocean exploration has revealed the presence of various cold-water coral ecosystems worldwide, but the molecular-level association between microbiomes and these corals remains unclear. This study utilized metabarcoding, tissue section observation, and metatranscriptomes to investigate the microbiome of cold-water coral species and found that these corals host diverse bacteria and symbiotic algae cells.
Recent deep-ocean exploration has uncovered a variety of cold-water coral (CWC) ecosystems around the world ocean, but it remains unclear how microbiome is associated with these corals at a molecular levels. This study utilized metabarcoding, tissue section observation, and metatranscriptomes to investigate the microbiome (Symbiodiniaceae and bacteria) of CWC species (Narella versluysi, Heterogorgia uatumani, and Muriceides sp.) from depths ranging from 260 m to 370 m. Warm-water coral (WWC) species (Acropora pruinosa, Pocillopora damicornis, and Galaxea fascicularis) were used as control groups. Results revealed that CWC host diverse bacteria and Symbiodiniaceae cells were observed in endoderm of CWC tissues. Several new candidate bacterial phyla were found in both CWC and WWC, including Coralsanbacteria, Coralqiangbacteria, Coralgsqaceae, Coralgongineae, etc. Both the 16S rRNA gene sequencing and metatranscriptomes revealed that Actinobacteria and Proteobacteria were abundant bacterial phyla in CWC. At the gene transcription level, the CWC-associated Symbiodiniaceae community showed a low-level transcription of genes involved in photosynthesis, CO2 fixation, glycolysis, citric acid cycle, while bacteria associated with CWC exhibited a high-level transcription of genes for carbon fixation via the Wood-Lijungdahl pathway, short chain fatty acids production, nitrogen, and sulfur cycles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available