4.7 Article

In situ synthesis of [Cu(BODN)5H2O]n@nano-Al composite energetic films with tunable properties in pyro-MEMS

Journal

LAB ON A CHIP
Volume 23, Issue 20, Pages 4493-4503

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3lc00282a

Keywords

-

Ask authors/readers for more resources

This work successfully fabricated MEMS compatible energetic material arrays and composite films and characterized their properties. The results showed that the morphology and composition of the materials can be effectively regulated, and the energetic properties of the composite films can be adjusted. This work provides a reference for integrating energetic materials into MEMS systems.
Integrating energetic materials with microelectromechanical systems (MEMS) to achieve miniaturized integrated smart energetic microchips has broad application prospects in miniaturized aerospace systems and civil explosive systems. In this work, MEMS compatible [Cu(BODN)5H(2)O](n) arrays and [Cu(BODN)5H(2)O](n)@nano-Al composite energetic films were successfully fabricated on copper substrates by the in situ reaction method and drop-coating method. Single crystal X-ray diffraction, powder X-ray diffraction, scanning electron microscopy, infrared spectroscopy, differential thermal analyses, and pulsed laser ignition were employed to characterize the prepared samples. The results show that [Cu(BODN)5H(2)O](n) arrays formed by the coordination reaction between the Cu(OH)(2) template and the BODN ligand exhibit a porous supramolecular structure with excellent thermal and energy properties. Their morphology and composition on a copper substrate can be effectively regulated by adjusting the reaction time and solution concentration. In addition, adjustable energetic properties of [Cu(BODN)5H(2)O](n)@nano-Al composite films can be achieved after the encapsulation of nano-Al. Their heat release, flame height and ignition duration can reach as much as 1987.5 J g(-1), 13.2 mm, and 5900 mu s, respectively, indicating that [Cu(BODN)5H(2)O](n)@nano-Al can be used as an excellent pyrotechnic agent in MEMS ignition chips. Overall, this work provides a reference for the integration and application of energetic materials in MEMS systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available