4.7 Article

Modelling guided waves in acoustoelastic and complex waveguides: From SAFE theory to an open-source tool

Journal

ULTRASONICS
Volume 136, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.ultras.2023.107144

Keywords

Guided wave; Semi-analytical finite element; Dispersion curve; Acoustoelasticity

Ask authors/readers for more resources

In this study, an open-source dispersion calculator for guided wave propagation is developed based on the semi-analytical finite element (SAFE) method. It can calculate guided waves in both isotropic and anisotropic materials, providing various characteristics and aiding researchers and engineers in understanding and utilizing guided waves.
Guided wave (GW)-based techniques have been extensively investigated and applied in material characterization, damage detection, and structural health monitoring. A comprehensive understanding of GW is the cornerstone for the development of such techniques. Based on the semi-analytical finite element (SAFE) method, an open-source dispersion calculator of GW propagating in acoustoelastic and complex waveguides with both isotropic and anisotropic material properties is developed. First, by assuming the simple harmonic motion along the propagation direction and discretizing along the thickness direction, 1D-GLL-SAFE (one-dimensional GaussLobatto-Legendre SAFE) is adopted for the solution of GW in plate waveguide, which is attributed to its superior performance in terms of computational accuracy and efficiency. Different theories on acoustoelasticity are adopted to calculate GWs under loading. Then 2D-Gauss-SAFE (two-dimensional Gauss SAFE) with triangular meshes filling the cross section is adopted for GW in general waveguides considering the ease of convenience in meshing. Finally, based on the 1D-GLL-SAFE and 2D-Gauss-SAFE algorithms, an open-source tool SAFEDC (SAFEbased dispersion calculator) is developed, which not only provides the solution of GW in pre-stressed isotropic waveguide and general cross section, but also extends to GW in laminates with arbitrary layer stacking configurations and hybrid stacking including multiple materials. Most of the GW features, including phase velocity, group velocity, wave number, wave structure in terms of displacement, stress, and strain, and animation of wave propagation are all offered in SAFEDC, which helps the researchers and engineers to understand and utilize GW.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available