4.8 Article

Confinement-Induced Diffusive Sound Transport in Nanoscale Fluidic Channels

Journal

PHYSICAL REVIEW LETTERS
Volume 131, Issue 8, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.131.084001

Keywords

-

Ask authors/readers for more resources

This study employs molecular dynamics simulations to investigate flow at the molecular scale and explores the influence of in-plane wavelengths. By probing the long wavelength limit in thermodynamic equilibrium, anomalous relaxation of density and longitudinal momentum fluctuations is observed, which can be described by an effective continuum theory.
Molecular dynamics (MD) simulations have been widely used to study flow at molecular scales. Most of this work is devoted to study the departure from continuum fluid mechanics as the confining dimension decreases. Here, we present MD results under conditions where hydrodynamic descriptions typically apply, but focus on the influence of in-plane wavelengths. Probing the long wavelength limit in thermodynamic equilibrium, we observed anomalous relaxation of the density and longitudinal momentum fluctuations. The limiting behavior can be described by an effective continuum theory that describes a transition to overdamped sound relaxation for compressible fluids.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available