4.6 Article

Synthesis of new class of indole acetic acid sulfonate derivatives as ectonucleotidases inhibitors

Journal

RSC ADVANCES
Volume 13, Issue 42, Pages 29496-29511

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3ra04266a

Keywords

-

Ask authors/readers for more resources

This article investigates the potential of substituted indole acetic acid sulfonate derivatives as ectonucleotidase inhibitors, showing that these compounds can inhibit tumor development and immune evasion, and have selectivity and potency.
Ectonucleotidases inhibitors (ENPPs, e5 ' NT (CD73) and h-TNAP) are potential therapeutic candidates for the treatment of cancer. Adenosine, the cancer-developing, and growth moiety is the resultant product of these enzymes. The synthesis of small molecules that can increase the acidic and ionizable structure of adenosine 5-monophosphate (AMP) has been used in traditional attempts to inhibit ENPPs, ecto-5 '-nucleotidase and h-TNAP. In this article, we present a short and interesting method for developing substituted indole acetic acid sulfonate derivatives (5a-5o), which are non-nucleotide based small molecules, and investigated their inhibitory potential against recombinant h-ENPP1, h-ENPP3, h-TNAP, h-e5 ' NT and r-e5 ' NT. Their overexpression in the tumor environment leads to high adenosine level that results in tumor development as well as immune evasion. Therefore, selective, and potent inhibitors of these enzymes would be expected to decrease adenosine levels and manage tumor development and progression. Our intended outcome led to the discovery of new potent inhibitors like' 5e (IC50 against h-ENPP1 = 0.32 +/- 0.01 mu M, 58 folds increased with respect to suramin), 5j (IC50 against h-ENPP3 = 0.62 +/- 0.003 mu M, 21 folds increase with respect to suramin), 5c (IC50 against h-e5 ' NT = 0.37 +/- 0.03 mu M, 115 folds increase with respect to sulfamic acid), 5i (IC50 against r-e5 ' NT = 0.81 +/- 0.05 mu M, 95 folds increase with respect to sulfamic acid), and 5g (IC50 against h-TNAP = 0.59 +/- 0.08 mu M, 36 folds increase with respect to Levamisole). Molecular docking studies revealed that inhibitors of these selected target enzymes induced favorable interactions with the key amino acids of the active site, including Lys255, Lys278, Asn277, Gly533, Lys528, Tyr451, Phe257, Tyr340, Gln465, Gln434, Lys437, Glu830, Cys818, Asn499, Arg40, Phe417, Phe500, Asn503, Asn599, Tyr281, Arg397, Asp526, Phe419 and Tyr502. Enzyme kinetic studies revealed that potent compounds such as 5j and 5e blocked these ectonucleotidases competitively while compounds 5e and 5c presented an un-competitive binding mode. 5g revealed a non-competitive mode of inhibition. Indole acetic acid sulfonate derivatives as ectonucleotidases inhibitors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available