4.8 Review

A comprehensive review on durability improvement of solid oxide fuel cells for commercial stationary power generation systems

Journal

APPLIED ENERGY
Volume 352, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2023.121864

Keywords

Solid oxide fuel cell; Durability; Degradation; Stationary power generation; Lifetime

Ask authors/readers for more resources

Solid oxide fuel cells (SOFCs) are considered as a viable alternative for power generation due to their high efficiency and environmental friendliness. This paper provides a comprehensive review of recent development in producing durable SOFCs for commercial stationary power generation systems, including degradation mechanisms and testing methods.
Solid oxide fuel cells (SOFCs) are recognized as an alternative for power generation applications due to their high efficiency and environment-friendly behaviour. The electronic devices and power age could be revolutionized with the commercialization of such devices. Stationary power generation systems based on SOFCs are a step closer to commercialization due to the latest developments in the technology that promises to overcome the inherent bottleneck of high-temperature fuel cells, i.e., durability. According to the US Department of Energy (DOE), the stationary power generation system should have a lifetime of 40,000 h continuous operation. The efficiency of SOFCs is mainly dependent on their components such as anode, cathode, interconnect, and electrolyte. There are numerous factors affecting the efficiency of SOFCs that include the composition of the fuel, kinetics, and thermodynamics of the cell, and working temperature. In this paper, we have presented a comprehensive review of the recent developments to produce durable SOFCs for commercial stationary power generation systems. The review summarizes several prominent degradation mechanisms involved in the SOFC components and methods to reduce the degradation process. In addition, the methods and techniques adopted for the degradation analysis are fully demonstrated, followed by a detailed durability diagnostic through in-situ and ex-situ durability testing. The review is complemented by a lucid presentation of future research challenges and the knowledge gaps coupled with potential recommendations to fill the gaps. The new engineering designs, the material development and the new knowledge presented in this study could provide useful guidance for the key stakeholders, policymakers and power generation entities to commercially implement the application of durable SOFCs for stationary power generation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available