4.2 Article

Organic-matter decomposition along a temperature gradient in a forested headwater stream

Journal

FRESHWATER SCIENCE
Volume 35, Issue 2, Pages 518-533

Publisher

UNIV CHICAGO PRESS
DOI: 10.1086/685657

Keywords

organic matter; decay; cotton-strip assay; litter quality; nutrients; shredders; snails; thermal gradient; diel temperature range; global change; Q(10-q); Metabolic Theory Ecology

Funding

  1. US Department of Energy's Office of Science, Biological and Environmental Research
  2. US Department of Energy [DE-AC05-00OR22725]
  3. ORNL Postdoctoral Research Associates Program
  4. Oaldand University URC Faculty Research Fellowship Award

Ask authors/readers for more resources

We used a natural temperature gradient in Walker Branch, a spring-fed forested stream in eastern Tennessee, USA, to examine the influence of temperature on organic-matter decomposition. In this stream, upstream sites are warmer than downstream sites in winter and are cooler than downstream sites in summer. We used a cotton-strip assay to examine breakdown of a substrate of uniform quality (95% cellulose) along the temperature gradient monthly for 2 y. We also used litter bags to examine the interactive effects of leaf-litter quality (labile red maple [Acer rubrum] and tulip poplar [Liriodendron tulipifera] and less labile white oak [Quercus alba]), invertebrates, and temperature on breakdown rates along the downstream temperature gradient for 90 d in winter. Cotton-strip tensile loss and leaf-litter breakdown rates were highly variable. Tensile-loss rates probably were driven by a combination of daily and diel temperature, discharge, and streamwater nutrients that varied seasonally and spatially along the temperature gradient. Leaf-litter breakdown rates tended to be faster in warmer upstream sites (red maple = 0.0452/d, tulip poplar = 0.0376/d, white oak = 0.0142/d) and slower in cooler downstream sites (red maple = 0.0312/d, tulip poplar = 0.0236/d, white oak = 0.0107/d), and breakdown rates were positively correlated with total invertebrate density. Temperature sensitivity of decomposition was similar among the 3 litter types. These results highlight the high degree of spatial and temporal heterogeneity that can exist for ecosystem processes and their drivers. Quantifying this heterogeneity is important when scaling functional metrics to stream and watershed scales and for understanding how organic-matter processing will respond to the warmer stream water temperatures expected as a result of global climate change.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available