4.4 Article

Relation between sampling, sensitivity and precision in strain mapping using the Geometric Phase Analysis method in Scanning Transmission Electron Microscopy

Journal

ULTRAMICROSCOPY
Volume 255, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.ultramic.2023.113842

Keywords

Strain characterization; Geometric phase analysis; Scanning transmission electron microscopy; Sampling; Moire sampling

Categories

Ask authors/readers for more resources

The precision and sensitivity of the GPA method for strain characterization is a widely discussed topic. This study introduces the concept of phase noise and analyzes the parameter of sampling to improve the precision of GPA. Experimental and theoretical results demonstrate that using a larger pixel spacing in STEM can enhance the precision and sensitivity of the GPA method.
The sensitivity and the precision of the Geometric Phase Analysis (GPA) method for strain characterization is a topic widely discussed in the literature and is usually difficult to quantify. Indeed, the GPA precision is intricately linked to the resolution of the strain maps defined when masking the periodic reflections in Fourier space. In this study an additional parameter, sampling, is proposed to be analyzed regarding the precision of GPA by developing the concept of a phase noise in the GPA equations. Both experimentally and theoretically, the following article demonstrates how the precision, and the sensitivity of the GPA method is improved when using a larger pixel spacing to record an electron micrograph in Scanning Transmission Electron Microscopy (STEM). The counterintuitive concept of increasing the field of view to improve the GPA precision results is an extension of the application of strain characterization methods in STEM towards low deformation levels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available