3.8 Article

Steering CO2 electrolysis selectivity by modulating the local reaction environment: An online DEMS approach for Cu electrodes

Journal

ESCIENCE
Volume 3, Issue 4, Pages -

Publisher

KEAI PUBLISHING LTD
DOI: 10.1016/j.esci.2023.100143

Keywords

Spectroelectrochemistry; CO2 reduction reaction; Copper electrode; Differential electrochemical mass spectroscopy; Local reaction environment

Ask authors/readers for more resources

This study presents a differential electrochemical mass spectroscopic approach to investigate the complex environment of CO2 reduction reaction, which could contribute to the achievement of a sustainable circular carbon economy.
Electrochemical CO2 reduction is a typical surface-mediated reaction, with its reaction kinetics and product distributions largely dependent on the dynamic evolution of reactive species at the cathode-catholyte interface and on the resultant mass transport within the hydrodynamic boundary layer in the vicinity of the cathode. To resolve the complex local reaction environment of branching CO2 reduction pathways, we here present a differential electrochemical mass spectroscopic (DEMS) approach for Cu electrodes to investigate CO2 mass transport, the local concentration gradients of buffering anions, and the Cu surface topology effects on CO2 electrolysis selectivity at a temporal resolution of similar to 400 ms. As a proof of concept, these tuning knobs were validated on an anion exchange membrane electrolyzer, which delivered a Faradaic efficiency of up to 40.4% and a partial current density of 121 mA cm(-2) for CO2-to-C2H4 valorization. This methodology, which bridges the study of fundamental surface electrochemistry and the upgrading of practical electrolyzer performance, could be of general interest in helping to achieve a sustainable circular carbon economy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available