4.6 Review

Key Indicators to Assess the Performance of LiDAR-Based Perception Algorithms: A Literature Review

Journal

IEEE ACCESS
Volume 11, Issue -, Pages 109142-109168

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2023.3321912

Keywords

Perception algorithms; metrics; deep learning; object detection; panoptic segmentation; autonomous driving

Ask authors/readers for more resources

This paper provides an overview of the evaluation of LiDAR-based perception systems, focusing on object detection, tracking, and panoptic segmentation algorithms. It discusses the importance of these algorithms and presents various metrics, including Planning KL-Divergence, Timed Quality Temporal Logic, and Spatio-temporal Quality Logic, for evaluating object detection algorithms. The paper also analyzes the metrics Panoptic Quality and Parsing Covering for panoptic segmentation using pretrained models, and applies diverse metrics to evaluate different pretrained models with their respective perception algorithms on publicly available datasets.
Perception algorithms are essential for autonomous or semi-autonomous vehicles to perceive the semantics of their surroundings, including object detection, panoptic segmentation, and tracking. Decision-making in case of safety-critical situations, like autonomous emergency braking and collision avoidance, relies on the outputs of these algorithms. This makes it essential to correctly assess such perception systems before their deployment and to monitor their performance when in use. It is difficult to test and validate these systems, particularly at runtime, due to the high-level and complex representations of their outputs. This paper presents an overview of different existing metrics used for the evaluation of LiDAR-based perception systems, emphasizing particularly object detection and tracking algorithms due to their importance in the final perception outcome. Along with generally used metrics, we also discuss the impact of Planning KL-Divergence (PKL), Timed Quality Temporal Logic (TQTL), and Spatio-temporal Quality Logic (STQL) metrics on object detection algorithms. In the case of panoptic segmentation, Panoptic Quality (PQ) and Parsing Covering (PC) metrics are analysed resorting to some pretrained models. Finally, it addresses the application of diverse metrics to evaluate different pretrained models with the respective perception algorithms on publicly available datasets. Besides the identification of the various metrics being proposed, their performance and influence on models are also assessed after conducting new tests or reproducing the experimental results of the reference under consideration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available