4.7 Article

The performance and microbial response of zero valent iron alleviating the thermal-alkaline stress and enhancing hydrolysis-acidification of primary sludge

Journal

JOURNAL OF ENVIRONMENTAL MANAGEMENT
Volume 347, Issue -, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2023.119134

Keywords

Primary sludge; Thermal-alkaline; Anaerobic fermentation; Iron-based materials; pH

Ask authors/readers for more resources

The study investigated the effects of zero valent iron (ZVI) and magnetite (Mag.) on the quality of hydrolysis-acidification effluent. It was found that ZVI effectively alleviated high temperature and strong alkali stress and improved the effluent VFAs.
The biological thermal-alkaline hydrolysis-acidification (BTAHA) could promote sludge disintegration, which was conducive to producing volatile fatty acids (VFAs). However, high temperature and strong alkali could reduce the BTAHA effluent quality. Because high temperature denatures proteins and significantly changes the material and energy metabolism of bacteria, while strong alkali inhibits fermentation microorganisms (especially acid-producing microorganisms). This study investigated the internal mechanism of zero valent iron (ZVI) and magnetite (Mag.) alleviating temperature and alkali stress and improving the quality of hydrolysis-acidification effluent. At pH 7-10, compared with the control and magnetite, ZVI increased the average effluent VFAs by 24.0%-40.1% and 11.6%-18.1%, respectively. At pH 9, ZVI could provide an ecological niche for acidifying bacteria that preferred neutral and weakly alkaline conditions, with a 49.8% proportion of VFAs to soluble chemical oxygen demand (SCOD). At pH 12, the fluorescence intensity ratio of easy to difficult biodegradable organic matter in control, RMag., and RZVI were 0.63, 0.62, and 1.31, respectively. It indicated ZVI effectively alleviated high temperature and strong alkali stress. This study provides a reference for improving the quality of BTAHA effluent.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available