4.7 Review

Surface functionalized 3D printed metal structures as next generation recyclable SERS substrates

Journal

CHEMICAL COMMUNICATIONS
Volume 59, Issue 90, Pages 13406-13420

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3cc04154a

Keywords

-

Ask authors/readers for more resources

Combining additive manufacturing with photocatalytic and plasmonic functionalities has promising applications in next-generation SERS. Laser powder bed fusion is a mature technique for manufacturing metallic structures, allowing the printing of complex internal structures. This feature article elaborates on the grafting of plasmonic and semiconductor nanoparticles on LPBF manufactured metallic substrates, showcasing the potential for tailoring substrate properties.
Combining the design flexibility and rapid prototyping capabilities of additive manufacturing with photocatalytic and plasmonic functionalities is promising for the development of next-generation SERS applications such as point of care diagnostics and in situ monitoring of chemical reactions in fuels and chemical processing. Laser powder bed fusion (LPBF) is a well-matured additive manufacturing technique which generates metallic structures through localised melting and joining of metal powders using a laser. LPBF reduces material wastage during manufacturing, is applicable to a wide range of metals and alloys, and allows printing of complex internal structures. This feature article elaborates the use of soot templating, chemical vapour deposition and electroless plating techniques for grafting plasmonic and semiconductor nanoparticles on the surface of LPBF manufactured metallic substrates. The capability to fabricate different types of intricate metallic lattices using additive manufacturing is demonstrated and technical challenges in their adequate functionalization are elaborated. The developed methodology allows tailoring of the substrate structure, composition, morphology, plasmonic and photocatalytic activities and thus unveils a new class of recyclable SERS substrates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available