3.8 Article

The role of machine learning in carbon neutrality: Catalyst property prediction, design, and synthesis for carbon dioxide reduction

Journal

ESCIENCE
Volume 3, Issue 4, Pages -

Publisher

KEAI PUBLISHING LTD
DOI: 10.1016/j.esci.2023.100136

Keywords

Carbon neutrality; Carbon dioxide reduction reaction; Machine learning; Catalyst; Rational design

Ask authors/readers for more resources

Researchers have made significant progress in the field of CO2RR by utilizing machine learning techniques, including accelerated catalyst property prediction, activity and selectivity prediction, guided catalyst and electrode design, and assisted experimental synthesis. These advancements contribute to a better understanding of CO2RR and play a role in achieving carbon neutrality.
Achieving carbon neutrality is an essential part of responding to climate change caused by the deforestation and over-exploitation of natural resources that have accompanied the development of human society. The carbon dioxide reduction reaction (CO2RR) is a promising strategy to capture and convert carbon dioxide (CO2) into value-added chemical products. However, the traditional trial-and-error method makes it expensive and time-consuming to understand the deeper mechanism behind the reaction, discover novel catalysts with superior performance and lower cost, and determine optimal support structures and electrolytes for the CO2RR. Emerging machine learning (ML) techniques provide an opportunity to integrate material science and artificial intelligence, which would enable chemists to extract the implicit knowledge behind data, be guided by the insights thereby gained, and be freed from performing repetitive experiments. In this perspective article, we focus on recent ad-vancements in ML-participated CO2RR applications. After a brief introduction to ML techniques and the CO2RR, we first focus on ML-accelerated property prediction for potential CO2RR catalysts. Then we explore ML-aided prediction of catalytic activity and selectivity. This is followed by a discussion about ML-guided catalyst and electrode design. Next, the potential application of ML-assisted experimental synthesis for the CO2RR is discussed. Finally, we present specific challenges and opportunities, with the aim of better understanding research and advancements in using ML for the CO2RR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available